期刊文献+

基于改进YOLOv5的SAR图像飞机目标细粒度识别 被引量:2

Fine-grained recognition of aircraft targets in SAR images based on improved YOLOv5
在线阅读 下载PDF
导出
摘要 针对合成孔径雷达(synthetic aperture radar,SAR)图像飞机目标细粒度识别中的小目标和多尺度检测问题,提出了一种基于YOLOv5的改进SAR图像飞机目标识别算法。该方法首先对网络进行重构,加入小目标检测层,改善小目标的漏检问题,提高目标定位精度。其次,在颈部网络中引入极化自注意力机制(polarized self attention,PSA),并使用双边特征金字塔结构(bi-directional feature pyramid network,BiFPN)进行多层特征带权融合,提高对飞机目标散射信息的关注度和滤除干扰信息。最后,使用SIoU(SCYLLA intersection over union)作为网络损失函数提高网络收敛速度和检测精度。利用SARAIRcraft-1.0数据集进行了算法有效性试验研究,实验结果表明,算法有效提升了飞机目标的检测精度,精确率、召回率、平均精度均值分别达到92.6%、84.1%、90.1%。 This study proposes a synthetic aperture radar(SAR)image aircraft target recognition algorithm based on improved YOLOv5 for the small target and multi-scale detection problems in the fine-grained detection of aircraft targets in synthetic aperture radar images.Firstly,a small target detection layer is added to solve the leakage detection problem of small targets and improve the target localization accuracy.Secondly,the polarized self-attention mechanism is introduced into the neck network,and the bi-directional feature pyramid network(BiFPN)is used for multilayer feature band-weight fusion to improve the attention to the scattering information of aircraft targets.Finally,SCYLLA intersection over union(SIoU)is used as the network loss function to improve the convergence speed.In this paper,the effectiveness of the algorithm is tested by using the SAR-AIRcraft 1.0 dataset,and the improved YOLOv5 achieves 92.6%recall,84.1%precision,and 90.1%mAP@0.5.Experimental results show that the proposed algorithm has higher detection accuracy than other mainstream one-stage algorithms.
作者 张武 刘秀清 Zhang Wu;Liu Xiuqing(Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100190,China;School of Electronic,Electrical and Communication Engineering,University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《国外电子测量技术》 2024年第6期143-151,共9页 Foreign Electronic Measurement Technology
基金 国家自然科学基金(61901444)项目资助。
关键词 合成孔径雷达 飞机目标细粒度识别 YOLOv5 SAR aircraft target fine-grained recognition YOLOv5
作者简介 张武,硕士,主要研究方向为SAR图像目标检测。E-mail:zhangwu21@mails.ucas.ac.cn;刘秀清,博士,副研究员,主要研究方向为极化SAR数据处理与信息提取技术。E-mail:lucia@mail.ie.ac.cn。
  • 相关文献

参考文献15

二级参考文献100

共引文献327

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部