期刊文献+

基于改进Informed-RRT^(*)算法的舰载机甲板平面路径规划

Aircraft Deck Flat Path Planning Based on Improved Informed-RRT^(*) Algorithm
在线阅读 下载PDF
导出
摘要 针对舰载机甲板路径规划问题,在Informed-RRT^(*)(informed rapidly-exploring random tree)的椭圆采样基础上,提出使用正态分布方式采样的IN-RRT^(*)(informed normal-RRT^(*))算法。首先,针对舰载机与运动场景建模,定义舰载机运动约束和避障策略;其次,将正态分布采样策略与椭圆采样相结合,获取优质高效采样点;引入人工势场法,自适应调节随机树的搜索步长值;使用向心Catmull-Rom样条插值法对路径进行平滑优化处理;提出针对动态障碍改进的动态窗口法,实现局部动态避障。最后,运用甲板平面环境实验检验算法性能。结果表明,IN-RRT^(*)算法能显著优化搜索时间和搜索路径质量,可应对动态场景规划出合理可行的平滑路径。 In order to solve the problem of aircraft deck path planning,based on the elliptic sampling of informed rapidly-exploring random tree(Informed-RRT^(*)),an informed normal-RRT^(*)(IN-RRT^(*)) algorithm using normal distribution sampling was proposed.Firstly,the carrier-based aircraft and the motion scene were modeled,the motion constraints and obstacle avoidance strategies of the carrier-based aircraft were defined,then the normally distributed sampling strategy was combined with elliptic sampling to obtain high-quality and efficient sampling points,the artificial potential field method was introduced to adaptively adjust the search step value of the random tree,the centripetal Catmull-Rom spline interpolation method was used to smooth and optimize the path,and the dynamic window method improved for dynamic obstacles was proposed to realize local dynamic obstacle avoidance.Finally,the performance of the algorithm was tested by experiments in the flat environment of the deck.The results show that the IN-RRT^(*) algorithm can significantly optimize the search time and search path quality,and can plan a reasonable and feasible smooth path for dynamic scenes.
作者 龚立雄 陈佳霖 黄霄 肖杪铃 GONG Li-xiong;CHEN Jia-lin;HUANG Xiao;XIAO Miao-ling(School of Mechanical Engineering,Hubei University of Technology,Wuhan 430068,China;Hubei Key Laboratory of Modern Manufacturing Quantity Engineering,Hubei University of Technology,Wuhan 430068,China)
出处 《科学技术与工程》 北大核心 2024年第17期7429-7437,共9页 Science Technology and Engineering
基金 国家自然科学基金(51907055) 湖北省科技计划重点研发专项(2023BAB042)。
关键词 舰载机牵引 路径规划 Informed-RRT^(*)算法 动态避障 carrier-based aircraft towing path planning informed-RRT^(*) algorithm dynamic obstacle avoidance
作者简介 第一作者:龚立雄(1978-),男,汉族,湖北仙桃人,博士,副教授。研究方向:智能制造、机器视觉。E-mail:herogong2001@sohu.com;通信作者:陈佳霖(1999-),男,汉族,湖北黄石人,硕士研究生。研究方向:路径规划与轨迹跟踪控制。E-mail:1063240805@qq.com。
  • 相关文献

参考文献11

二级参考文献87

  • 1朱庆保,张玉兰.基于栅格法的机器人路径规划蚁群算法[J].机器人,2005,27(2):132-136. 被引量:124
  • 2郑昌文,严平,丁明跃,等.飞行器航迹规划[M].北京:国防工业出版社,2008.
  • 3Han W. Wang Q G. Conspectus of adrcraft carrier and currier platte[M]. Yantai: Naval Aeronautical and Astronautical Uni versily Press. 2009:37 - 41,.
  • 4Fu Y G, Ding M Y, Zhou C P. Phase angle encoded and quan- tum behaved parlicle swarm optimization applied 1o three dimen sional route planning for UAV[J]. IEEE Tatsm Systems, Man aul Cybernetics Part A : Systems fltmans. 2012. 12 (2): 511-526.
  • 5Authority of thehicf of Naval Operations. CV Flight lhmgar Deck NATOPSManua[R]. Washington. DV: Authority of the Chief of Naval Operations 2001.
  • 6Johnston J S. A feasibility study of a persistent monitoring sys- tem for the flight deck of U. S[D]. USA: Navy Aircraft Carriers Department of the Air Force Air University, 2009.
  • 7Deng Y, Chen Y, Zhang Y, et al. Fuzzy Dijkstra algorithm for shortest path problem under uncertain environment[J]. Applied Sot Computing, 2012, 12(3) : 1231 - 1237.
  • 8Livx R, Fang 13, Tang Y Y. A fast convex hull algorithm with maximum inscribed circle affine transformation[J]. Neurocom- puting, 2012, 77(1): 212-221.
  • 9Brun C, Dufourd J F, Magaud N. Designing and proving correct a convex hull algorithm with hypermaps in Coq[J]. Computa- tional Geometry, 2012, 45(8) : 436 - 457.
  • 10Prete J, Mitchell J S B. Safe routing of multiple aircraft flows in the presence of time-varying weather data[C]//Proc, of the AIAA Guidance, Navigation, and Control ConJerence , 2004 1 -21.

共引文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部