摘要
非侵入式负荷监测技术不仅能将电能流向透明化,还能简化智能电表安装流程,从而有效降低负荷监测成本。为提高非侵入式负荷监测中的负荷识别准确性,提出了基于数据扩充与无阈值递归图的非侵入式负荷识别方法。采用去噪扩散概率模型对小样本负荷数据进行数据扩充,以提升负荷识别方法的鲁棒性;通过去除递归图的Heaviside函数实现无阈值递归图以高效表征负荷特征,并结合Transformer深度学习网络构建负荷识别框架。将所提出的方法应用到3个实测数据集中,实验结果表明,所提方法能有效提高负荷识别准确度,改善分类效果。
Non-intrusive load monitoring(NILM)not only makes the flow of electric energy transparent but also simplifies the installation process of smart meters,effectively reducing the cost of load monitoring.To enhance the accuracy of load recognition in NILM,a method for load recognition based on data augmentation and threshold-free recurrence plot(RP)is proposed.a denoising diffusion probability model(DDPM)is utilized to augment the load data of small samples to enhance the robustness of the load recognition method.Furthermore,a threshold-free RP,achieved by removing the Heaviside function of the recurrence graph,efficiently represents load characteristics.This is combined with a Transformer deep learning network to construct a load recognition framework.The proposed method is applied to three real-world datasets,and experimental results demonstrate its effectiveness in improving load recognition accuracy and enhancing classification performance.
作者
邢海青
郭瑞峰
杨浙川
熊小雨
施永涛
XING Haiqing;GUO Ruifeng;YANG Zhechuan;XIONG Xiaoyu;SHI Yongtao(State Grid Hangzhou Yuhang Power Supply Company,Hangzhou 311121,China;School of Automation,Hangzhou Dianzi University,Hangzhou 310018,China)
出处
《浙江电力》
2024年第6期88-100,共13页
Zhejiang Electric Power
基金
浙江省重点研发计划(2021C01144)
浙江大有集团有限公司科技项目(2021-DY16)。
作者简介
邢海青(1983),男,硕士,高级工程师,主要研究方向为电力系统继电保护、调度自动化、厂站自动结构化、低碳电力系统以及光伏等新能源消纳等;通信作者:施永涛(1997),男,硕士,主要研究方向为非侵入式负荷监测、综合能源系统调控等。