期刊文献+

基于粒子群算法的电力负荷预测

Power Load Forecasting Based on Particle Swarm Optimization Algorithm
在线阅读 下载PDF
导出
摘要 针对传统电力负荷预测中存在的对非线性关系的不适应问题,提出了基于Levy飞行策略的改进粒子群优化算法。即利用离散化方式优化原始数据集,经数据挖掘得出3个关键性参数,接着通过引入Levy飞行策略,该算法可在优化过程中更灵活地调整粒子位置,有效提高了电力负荷预测的准确性和全局搜索性能。并通过实验证实了LPSO算法的优越性,为电力系统运营提供了更可靠的预测工具。 In response to the problem of non adaptation to nonlinear relationships in traditional power load forecasting,an improved particle swarm optimization algorithm based on Levy flight strategy is proposed.Firstly,the original dataset is optimized using a discretization approach,and three key parameters are identified through data mining.Then,by introducing the Levy flight strategy,the algorithm adjusts particle positions more flexibly during the optimization process,effectively improving the accuracy and global search performance of power load forecasting.The superiority of the LPSO algorithm has been confirmed through experiments,providing a more reliable prediction tool for power system operation.
作者 金佳 JIN Jia
出处 《今日自动化》 2024年第4期99-101,共3页 Automation Today
关键词 配电网 大数据 数据分析 负荷预测 distribution network big data data analysis load forecasting
  • 相关文献

参考文献4

二级参考文献30

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部