摘要
为实现水体中抗生素类污染物的高效降解,本研究基于双金属MOF材料构建思路,采用一锅合成法制备了双金属掺杂CoMg-MOF-74材料,再对其高温热解形成多孔碳催化剂(Co_(x)MgO_(y)/C)。探究不同Co、Mg金属配比的Co_(x)MgO_(y)/C对过氧单硫酸盐(PMS)体系的催化能力,以及在不同水环境下甲硝唑(MNZ)降解的效果,并分析其对MNZ的降解路径。结果表明:Co_(1)(MgO)_(1)/C-PMS体系具有最优的MNZ降解能力,在室温环境下,投加5 mg的Co_(1)MgO_(1)/C,即可在30 min内实现对MNZ的完全降解。同时Co_(1)(MgO)_(1)/C-PMS体系具有较强的抗干扰能力,在较宽的pH范围内(3~9)与复杂水环境中保持了较高的MNZ降解效率。借助各种先进表征与降解实验分析可得Co_(1)MgO_(1)/C-PMS体系主要存在三种降解路径,其中单线态氧(^(1)O_(2))对MNZ的降解起主要作用,硫酸根自由基(SO_(4)·^(-))与催化剂介导的电子转移起次要作用。本研究为高性能双金属催化剂的合成提供了一种新的思路,也为水环境中MNZ的污染治理提供了科学依据。
In order to achieve efficient degradation of antibiotic pollutants in a water environment.In this work,based on the idea of bimetallic MOF material construction,the doped bimetallic CoMg-MOF-74 material was prepared by a one-pot synthesis method and then pyrolyzed at high temperature to form a porous carbon catalyst(Co_(x)MgO_(y)/C).The Co_(x)MgO_(y)/C was used as a catalyst in the peroxymonosulfate(PMS)system to treat metronidazole(MNZ)wastewater.The catalytic ability of Co_(x)MgO_(y)/C with different metal ratios of Co and Mg was explored.The effects of MNZ degradation in various water environments were also analyzed.The MNZ degradation pathway was further elucidated.The results showed that the Co_(1)(MgO)_(1)/C-PMS system displayed the perfect MNZ degradation ability,in which the MNZ pollutant can be completely degraded within 30 min by adding only 5 mg of Co_(1)MgO_(1)/C at room temperature.Moreover,the above system also presented excellent anti-interference ability,which can maintain the MNZ degradation efficiency in a wide pH range(3~9)and complex water environments.Employing various advanced characterization and degradation experiments,it can be concluded that a triple MNZ degradation pathway was triggered in the Co_(1)MgO_(1)/C-PMS system.The singlet oxygen(^(1)O_(2))played a major role,and the sulfate radical(SO_(4)·^(-))and catalyst-mediated electron transfer expressed a secondary role.Therefore,the received findings of this study provide a novel strategy for the synthesis of high-performance bimetallic catalysts and also contribute a reasonable scientific basis for the MNZ pollution treatment application.
作者
何培海
罗倩影
田欣萌
施春雪
陈欢启
刘峥
HE Peihai;LUO Qianying;TIAN Xinmeng;SHI Chunxue;CHEN Huanqi;LIU Zheng(School of Resources,Environment and Materials,Guangxi University,Nanning 530004,China)
出处
《水处理技术》
CAS
CSCD
北大核心
2024年第6期40-45,共6页
Technology of Water Treatment
基金
国家自然科学基金(52166011)
广西自然科学基金(2021GXNSFAA220049)
广西大学生创新创业训练计划基金(S202210593246)。
作者简介
何培海(2002-),男,本科生,研究方向为水污染控制技术,电子邮件:1138892170@qq.com;通讯作者:刘峥,博士,电子邮件:zhengl99@gxu.edu.cn。