期刊文献+

基于航迹数据的改进DBSCAN聚类算法研究 被引量:3

Research on improved DBSCAN clustering algorithm based on track data
在线阅读 下载PDF
导出
摘要 为研究模拟训练航迹数据聚类,针对基于密度的噪声应用空间聚类(DBSCAN)算法参数选取不精准、聚类准确度不高的问题,提出一种改进的DBSCAN聚类算法.首先,通过KNN算法计算邻域半径并得到用于DBSCAN聚类的初始化核心数据对象,实现粗聚类;其次,根据数据对象的特点,加入航向特征进行二次聚类,既解决了DBSCAN算法随机初始化核心点和参数选取难的问题,又加入能够反映数据方向的特征;最后,进行了仿真实验.实验结果表明,改进DBSCAN算法比传统DBSCAN算法具有更好的聚类效果. In order to study the simulation training track data clustering,this paper aims at the problem of inaccurate parameter selection and low clustering accuracy of the traditional DBSCAN algorithm to propose an improved DBSCAN clustering algorithm.Firstly,KNN algorithm is used to calculate the neighborhood radius and obtain the initializing core data object for DBSCAN clustering to realize rough clustering.Then,according to the characteristics of data objects,heading features are added for a secondary clustering,which not only solves the difficulty of randomly initialized core point and parameter selection of DBSCAN algorithm,but also adds features that reflect the direction of the data.Finally,a simulation experiment is carried out.The experimental results show that the improved DBSCAN algorithm has better clustering effect than the traditional algorithm.
作者 申正义 李平 王洪林 赵迪 郭文琪 SHEN Zhengyi;LI Ping;WANG Honglin;ZHAO Di;GUOWenqi(Air Force EarlyWarning Academy,Wuhan 430019,China;No.31435 Unit,the PLA,Shenyang 110015,China)
机构地区 空军预警学院 [
出处 《空天预警研究学报》 CSCD 2024年第2期128-131,共4页 JOURNAL OF AIR & SPACE EARLY WARNING RESEARCH
关键词 模拟训练 DBSCAN算法 二次聚类 自适应参数选取 航迹数据 simulation training DBSCAN algorithm secondary clustering adaptive parameter selection track data
作者简介 申正义(1982-),男,副教授,主要从事模拟训练、数据挖掘等研究.
  • 相关文献

参考文献10

二级参考文献92

  • 1姜如波.基于三维激光扫描技术的建筑物模型重建[J].测绘通报,2013(S1):80-83. 被引量:24
  • 2袁方,孟增辉,于戈.对k-means聚类算法的改进[J].计算机工程与应用,2004,40(36):177-178. 被引量:48
  • 3岳士弘,李平,郭继东,周水庚.A statistical information-based clustering approach in distance space[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2005,6(1):71-78. 被引量:9
  • 4RUI Wen-juan CAO De-xin SONG Xie-wu.An Interval Maximum Entropy Method for Quadratic Programming Problem[J].Journal of China University of Mining and Technology,2005,15(4):379-383. 被引量:3
  • 5Frank R. Clustering of flight tracks[C]//Proc, of the American Institute of Aeronautics and Astronautics, 2010 : 1 - 9.
  • 6Gariel M, Srivastava A N, Feron E. Trajectory clustering and an application to airspace monitoring[J]. IEEE Trans. on Intel ligent Transportation Systems, 2011, 12(4) : 1511 - 1524.
  • 7Lee J G, Han J, Li X. Trajectory outlier detection: a partition and detect framework[C]//Proc, of the 24th IEEE International Conference on Data Engineering, 2008: 140 - 149.
  • 8Dahlbom A, Niklasson L. Trajectory clustering for coastal sur veillance[C]//Proc, of the l Oth IEEE International Conference on Information Fusion, 2007 : 1 - 8.
  • 9国家环境保护局.环境影响评价技术导则:声环境[s].北京:中国环境科学出版社,2009.
  • 10Lee S S, Lin J C. An Accelerated K means clustering algorithm using selection and erasure rules[J]. Journal of Zhejiang Uni- versity (Computers & Electronics), 2012, 13(10): 761- 768.

共引文献165

同被引文献19

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部