期刊文献+

基于典型相关分析的脑网络研究方法综述

A Review of Brain Network Research Methods Based on Canonical Correlation Analysis
在线阅读 下载PDF
导出
摘要 脑网络分析在研究大脑的认知活动、探究大脑的信息处理模式和辅助精神类疾病的诊断等方面都起着重要作用。近年来,基于多变量数据集的脑网络研究方法得到了普遍关注。典型相关分析(CCA)作为一种基于数据驱动的多元统计方法,能够有效捕捉多变量数据间的隐含关系,被广泛地应用于脑网络研究。综述CCA在脑网络研究中的作用、具体应用模式、存在的优势和局限性。首先,对传统的CCA其及常见变体的算法原理进行归纳总结;然后,阐述基于CCA分析方法在脑网络构建、脑网络分析、脑网络标记物识别方面的研究现状;最后,对基于CCA的脑网络研究方法进行总结并探讨未来研究的方向。 Brain network analysis plays important roles in studying the cognitive activity of brain,including exploring the information processing mode of the brain and assisting the diagnosis of mental diseases.In recent years,brain network research methods based on multivariate datasets have attracted great attention.Canonical correlation analysis(CCA),as a data-driven multivariate statistical method,can effectively capture the implicit relationship between multivariate data and is widely used in brain network research.This article reviewed the roles of CCA in the brain network research,specific application modes,and advantages and limitations.Firstly,the algorithm principles of traditional CCA and its common variants were summarized.Next,the research status of CCA-based analysis methods in the brain network construction,brain network analysis,and brain network marker identification were described.At last,the methods of brain network research based on CCA were summarized and the future research directions were discussed.
作者 尹顺杰 陈凯 薛开庆 尧德中 徐鹏 张涛 Yin Shunjie;Chen Kai;Xue Kaiqing;Yao Dezhong;Xu Peng;Zhang Tao(School of Science,Xihua University,Chengdu 610039,China;School of Computer Science and Software Engineering,Xihua University,Chengdu 610039,China;Key Laboratory for Neuroinformation of Ministry of Education,University of Electronic Science and Technology of China,Chengdu 610054,China)
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2024年第2期240-251,共12页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金青年基金(62006197) 四川省科技厅科技计划项目(2018JY0526) 西华大学校重点科研基金项目(z1422614) 教育部春晖计划合作科研项目(z2017078)。
关键词 典型相关分析 脑网络 功能连接 功能性磁共振成像(fMRI) canonical correlation analysis brain network functional connectivity functional magnetic resonance imaging(fMRI)
作者简介 尧德中,中国生物医学工程学会高级会员;徐鹏,中国生物医学工程学会高级会员;通信作者:张涛,E-mail:zhangtao1698@126.com。
  • 相关文献

参考文献7

二级参考文献36

  • 1金蛟.稳健典型相关分析及应用[J].统计与决策,2007,23(10):135-136. 被引量:7
  • 2刘永宏,杨旭红,廖伟,刘凌,鄢波,林旭,席静,徐鸿儒,陈华富,周东.青少年肌阵挛癫痫发作间期EEG-fMRI的研究[J].生物医学工程学杂志,2007,24(4):748-751. 被引量:3
  • 3Spores O, Chialvo DR, Kaiser M, et aJ. Organization, development and function of complex brain networks. Trends Cogn Sci, 2004, 8: 418-425.
  • 4Wang F, Kalmar JH, He Y, et al. Functional and structural connectivity between the perigenual anterior cingulate and amygdala in bipolar disorder. Biological Psychiatry, 2009, 66(5): 516-521.
  • 5Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 2009, 10(3): 186-198.
  • 6Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. of the National Academy of Sciences, 1990, 87(24): 9868 -9872.
  • 7Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 2002, 15(1): 273-289.
  • 8Reijneveld JC, Ponten SC, Berendse HW, et al. The application of graph theoretical analysis to complex networks in the brain. Clinical Neurophysiology, 2007, 118(11): 2317-2331.
  • 9Huber W, Carey VJ, Long L, et al. Graphs in molecular biology. BMC Bioinformatics, 2007, 8(S6): S8.
  • 10Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscienee, 2009, 10(3): 186-198.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部