期刊文献+

基于无监督深度融合机制的货物在线装箱算法 被引量:1

Online Cargo Packing Algorithm Based on Unsupervised Deep Fusion Mechanism
在线阅读 下载PDF
导出
摘要 目的针对当前三维装箱算法存在的模型鲁棒性差、泛化性弱、装载率低等问题,设计一种无监督融合机制的在线装箱算法。方法充分考虑货物“即到即码”的实时性需求,以容器空间利用率为优化目标,基于无监督深度融合指针网络端到端学习模型框架,将在线三维装箱的码垛过程公式化地表述为马尔科夫决策过程,设计强化学习要素,并以深度强化学习算法为主,融入蒙特卡洛树搜索,对智能体的决策动作进行训练,以生成具有较优“学习”能力的在线三维装箱模型。结果采用125种不同尺寸和方向随机生成货物数据集,并在7种约束条件下验证,实验结果表明,容器的平均利用率可达84.6%。结论该算法的泛化性较好,且其装载率远优于当前效果较好的启发式算法、深度学习方法,为货物的在线装箱提供了理论依据及参考。 The work aims to design an on-line unsupervised integration algorithm,in order to solve the problems of poor model robustness,poor generalization and low loading rate in the existing 3D packing algorithm.In full consideration of the real-time premise of"just-in-time"cargo and with the container space utilization rate as the optimization goal,based on the end-to-end learning model framework of unsupervised deep fusion pointer network,the stacking process of online 3D packing was formulated as a Markovian decision-making process,to design reinforcement learning elements,and to give priority to the deep reinforcement learning algorithm.The decision-making actions of the agent were trained with the Monte Carlo tree search to generate an online three-dimensional boxing model with better"learning"ability.125 randomly generated cargo data sets with different sizes and directions were tested under 7 constraint conditions.The experimental results showed that the average utilization rate of containers could reach 84.6%.The generalization of the algorithm is good,and the loading rate of the algorithm is much better than the current heuristic and depth learning method,providing theoretical basis and reference for on-line packing of cargo.
作者 张长勇 姚凯超 王彤 ZHANG Changyong;YAO Kaichao;WANG Tong(College of Electronic Information and Automation,Civil Aviation University of China,Tianjin 300300,China)
出处 《包装工程》 CAS 北大核心 2024年第11期153-162,共10页 Packaging Engineering
基金 中央高校高水平培育项目(3122023PY04)。
关键词 在线三维装箱 无监督融合机制 马尔科夫决策 指针网络 蒙特卡洛树搜索 online 3D packing unsupervised integration mechanism Markovian decision pointer network Monte Carlo tree search
  • 相关文献

参考文献5

二级参考文献44

  • 1张德富,魏丽军,陈青山,陈火旺.三维装箱问题的组合启发式算法[J].软件学报,2007,18(9):2083-2089. 被引量:54
  • 2Dyckhoff H, Finke U. Cutting and Packing in Production and Distribution. Heidelberg. Physica-Verlag, 1992.
  • 3Wascher G, HauBner H, Schumann H. An improved typology of cutting and packing problems. European Journal of Operational Research, 2007, 183(3). 1109-1130.
  • 4Bischoff E E, Marriott M D. A comparative evaluation of heuristics for container loading. European Journal of Operational Research, 1990, 44(2). 267-276.
  • 5Bortfeldt A, Mack D. A heuristic for the three dimensional strip packing problem. European Journal of Operational Research, 2007, 183(3). 1267-1279.
  • 6Faroe O, Pisinger D, Zachariasen M. Guided local search for three-dimensional bin-packing problem. INFORMS Journal on Computing, 2003, 15(3). 267-283.
  • 7Pisinger D. Heuristics for the container loading problem. European Journal of Operational Research, 2002, 141(2): 143-153.
  • 8George J A, Robinson D F. A heuristic for packing boxes into a container. Computers and Operations Research, 1980, 7(3). 147-156.
  • 9Bischoff E E, Ratcliff B S W. Issues in the development of approaches to container loading. Omega, 1995, 23(4). 377- 390.
  • 10Gehring H, Bortfeldt A. A genetic algorithm for solving the container loading problem. International Transactions in Operational Research, 1997, 4(5-6). 401-418.

共引文献89

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部