期刊文献+

基于改进卷积神经网络的心理状态预警技术 被引量:1

Mental state pre⁃warning technology based on improved convolutional neural network
在线阅读 下载PDF
导出
摘要 针对传统问卷法难以真实反映被调查者心理状态的问题,基于光流法和卷积神经网络提出了一种微表情判断方法,并将其作为心理状态预警技术的核心模块。对于数据集中人脸数据离散的问题,该方法采用人眼权重法对图像进行预处理,且通过金字塔光流算法提取预处理图像序列的光流特征,再利用三维卷积神经网络对该特征加以训练。与传统算法相比,所提方法在减少模型训练参数与运算时间的同时还具有更优的学习能力。实验测试结果表明,该算法在CASME数据集上的微表情识别准确率为89.2%,F1值为0.6751,均优于其他对比方法。由此证明,该算法可实现对人脸微表情的准确识别,进而为学生心理状态预警提供客观的数据支撑。 Aiming at the defect that the traditional questionnaire method is difficult to truly reflect the psychological state of the respondents,a micro expression judgment technology based on optical flow method and convolution neural network algorithm is proposed,and takes it as the core module of the psychological state early warning algorithm.For the problem of discrete face data in the dataset,the human eye weight algorithm is used to preprocess the image.The optical flow characteristics of the preprocessed image sequence are extracted by the pyramid optical flow algorithm,and then the optical flow characteristics are trained by the three⁃dimensional convolution neural network.Compared with traditional methods,the proposed expression judgment technology has better learning ability while reducing model training parameters and operation time.The experimental test results show that the accuracy of this method in the recognition of microexpressions in CASME data set is 89.2%,and the F1 value is 0.6751,which is higher than other comparison methods,indicating that it can accurately recognize facial microexpressions and provide objective data support for students’psychological state early warning.
作者 王克 WANG Ke(Xi’an Aeronautical Polytechnic Institute,Xi’an 710089,China)
出处 《电子设计工程》 2024年第10期49-53,共5页 Electronic Design Engineering
基金 陕西省教育工委项目(2022XKT54)。
关键词 金字塔光流法 三维卷积神经网络 微表情识别 人脸识别 心理预警 pyramid optical flow method three⁃dimensional convolution neural network micro expression recognition face recognition psychological early warning
作者简介 王克(1983-),女,河南郑州人,硕士,讲师。研究方向:创新创业,思想政治教育,心理健康。
  • 相关文献

参考文献16

二级参考文献90

共引文献133

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部