期刊文献+

基于最省刻度尺构造极小优美图的图论方法 被引量:1

A construction method of mininal graceful graph basedon least scale number on ruler
在线阅读 下载PDF
导出
摘要 [目的]利用最省刻度尺的已有研究成果研究极小优美图的构造方法.[方法]对任意正整数n≥2,在长度是n的无刻度直尺上最少刻多少个刻度,就能度量1-n的所有长度,这就是最省刻度的尺子问题.给定正整数n,存在m个整数组成的集合{a_(i)},满足0=a_(1)<a_(2)<…<a_(m)=n,使得任意整数s(0≤s≤n)均可表示成该集合中两个元素的差a_(j)-a_(i),则称{a_(i)}为n上的受限差基.根据极小优美图和受限差基的定义,将极小优美图问题等效为最省刻度尺问题进而得到极小优美图的构造方法.[结果]由n≥5时K n不是优美图和n≥1时图K 4+K n,n是优美图的结论,得到了边数是6至82的极小优美图顶点数的上下界;用构造方法给出了图K_(3)∨K 1,3,n-3 e,K_(3,n)∨K_(3-e)和K_(2,3,n)∨K_(3)-7e的优美标号,从而证明了这三类图都是优美图,并且当0≤n≤9时,K_(3)∨K_(1,3,,n)-3 e和K_(2,3,n)∨K_(3)-7e都是极小优美图,当0≤n≤8时,K_(3,n)∨K_(3-e)都是极小优美图,由此给出了29组最省刻度尺的刻度值.[结论]最省刻度尺可以为构造极小优美图提供新的研究思路. [Objective]For any positive integer n≥2,it is possible to measure all lengths from 1 to n by carving at least a few scales on an ungraduated ruler of length n.This is the problem of the ruler with the least number of scales.Given a positive integer n,there exists a set of m integers{a_(i)},which satisfies 0=a_(1)<a_(2)<…<a_(m)=n,so that any integer s(0≤s≤n)can be expressed as the difference a_(j)-a_(i) between the two elements in the set.Therefore,{a_(i)}is called the restricted difference basis on n.The ruler with the least number of divisions,restricted difference basis,and representation of graceful graphs are three unresolved mathematical problems.[Methods]According to the definitions of minimal graceful graphs and restricted difference basis,the construction of“ruler with the least number of divisions”,“minimal graceful graph”,and“restricted difference basis”is the same mathematical problem.[Results]The conclusion is that K n is not a graceful graph when n≥5,and K 4+Kn is a graceful graph when n≥1.The upper and lower bounds on the number of vertices of minimal graceful graphs with edges ranging from 6 to 82 are obtained;The graceful labels of graphs K_(3)∨K_(1,3,n-3e),K_(3,n)∨K_(3-e)and K_(2,3,n)∨K_(3)-7e are given using construction methods,thus proving that these three types of graphs are all graceful graphs.Moreover,when 0≤n≤9,K_(3)∨K 1,3,n-3e and K_(2,3,n)∨K_(3)-7e are all extremely graceful graphs.When 0≤n≤8,K_(3,n)∨K_(3-e)are all extremely graceful graphs,and 29 sets of scale values for the most economical rulers are given.[Conclusions]As the length n of the ruler increases,a set of scale values for this ruler needs to be calculated.Minimum scale value will become very difficult.At present,there is no literature on using the method of constructing graceful graphs to obtain the most economical scale value design.This article proposes a new approach to solve the problems of the most economical scale and restricted difference basis by using the method of constructing minimal graceful graphs.
作者 唐保祥 任韩 TANG Baoxiang;REN Han(School of Mathematics and Statistics,Tianshui Normal University,Tianshui 741001,China;School of Mathematics Sciences,East China Normal University,Shanghai 200062,China)
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期339-344,共6页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(11171114)。
关键词 最省刻度尺 优美图 联图 极小优美图 优美标号 least scale number on ruler graceful graph join graphs minimal graceful graph graceful labeling
作者简介 通信作者:唐保祥,tbx0618@sina.com。
  • 相关文献

参考文献7

二级参考文献31

  • 1魏丽侠,贾治中.非连通图G_1uG_2及G_1uG_2uK_2的优美性[J].应用数学学报,2005,28(4):689-694. 被引量:26
  • 2赵爽.省刻度尺[J].湖南教育,1999,5.
  • 3BONDY J A 等 吴望名等(译).图论及其应用[M].北京:科学出版社,1984..
  • 4蔡华,魏丽侠,吕显瑞.非连通图(P_(1)∨P_(n))∪G_r和(P_(1)∨P_(n))∪(P_(3)∨-■_(r))及W_(n)∪St(m)的优美性[J].吉林大学学报(理学版),2007,45(4):539-543. 被引量:16
  • 5孙宗剑,黎贞崇,罗海鹏,何建东.升降梯图L_(3m+n+1)的优美性[J].计算机应用研究,2007,24(12):132-133. 被引量:4
  • 6ALON N. Combinarorics, probability and computing [ M]. Cambridge: Cambridge University Press, 1999, 150 - 236.
  • 7GALLIAN J A. A dynamic survey of graph labeling [ J ]. The Electronic Joumal of Combinatorics, 2013, 19, DS6 : 1 - 306.
  • 8ZHOUXQ, YAOB, CHENXE, et al. A proof to the odd-gracefulness of all lobsters [ J ]. Ars Combinatorial, 2012, 103:13 - 18.
  • 9KATHIESAN K M. Two classes of graceful graphs [ J ]. Ars Combinatorial, 2000, 22:491 -504.
  • 10GALLIAN J A. A dynamic survey of graph labeling~J~. The Electronic Journal of Combinatorics, 2011, 18 : 1-219.

共引文献23

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部