期刊文献+

基于混合果蝇算法的桩锚支护深基坑临界滑面搜索

Critical Slip Surface Search for Pile-Anchor Supported Deep Foundation Pits Based on Hybrid Fruit Fly Algorithm
在线阅读 下载PDF
导出
摘要 进行基坑整体稳定性分析常采用极限平衡法,但仍然需要依据经验试算一系列滑面,将安全系数最小的滑面确定为最危险滑面.针对此问题,提出将果蝇优化(FOA)算法与禁忌搜索(TS)算法融合,提出自适应步长的混合果蝇优化算法(HFOA),以克服基本果蝇算法局部寻优精度不高且易陷入局部最优的缺点,确保获得全局最优解,并结合简化Bishop算法用于临界滑面的搜索.在Matlab中编程实现该算法,通过与6种启发式算法进行对比,结果表明,HFOA适用于均质土悬臂支护基坑、成层土和含软弱夹层的桩锚支护基坑,相较于遗传算法等6种算法具有更快的收敛速度、更高的收敛精度和可靠性,为深基坑临界滑动面搜索提供了一种新的求解策略. The limit equilibrium method is used for the overall stability analysis of the pit,requiring iterative calculation of various potential slip surfaces.The slip surface with the smallest safety factor is identified as the most dangerous slip surface.The fruit fly optimization algorithm(FOA)with the tabu search(TS)algorithm is fused,and the hybrid fruit fly optimization algorithm(HFOA)with adaptive step size is proposed to overcome the limitations of the fruit fly optimization algorithm,such as lower accuracy and susceptibility to local optimum.In order to ensure that the global optimal solution is obtained,the simplified Bishop algorithm for the search of critical slip surfaces is combined.By comparing with the six heuristic algorithms,it is shown that the HFOA is applicable to cantilever-supported pits with homogeneous soil,layered soil and pile-anchored supported pits with soft soil.It is more accurate and efficient compared with the six algorithms such as genetic algorithm,and provides a new solution strategy for identifying critical sliding surface in deep foundation pits.
作者 马泽宁 沙成满 路明浩 MA Ze-ning;SHA Cheng-man;LU Ming-hao(School of Resources&Civil Engineering,Northeastern University,Shenyang 110819,China)
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期120-128,共9页 Journal of Northeastern University(Natural Science)
关键词 深基坑 整体稳定性 果蝇优化算法 禁忌搜索算法 最小安全系数 deep foundation pit integral stability fruit fly optimization algorithm tabu search algorithm minimum safety factor
作者简介 马泽宁(1999-),男,河北承德人,东北大学硕士研究生;Corresponding author:沙成满(1964-),男,黑龙江哈尔滨人,东北大学副教授,硕士生导师,E-mail:shachengman@mail.neu.edu.cn。
  • 相关文献

参考文献8

二级参考文献105

  • 1Hart,P E,Nilsson,N J and Raphael,B. A formal basis for the heuristic determination of minimum cost paths [J]. IEEE Transactions on Systems Science and Cy- bernetics SSC4,1968(2) : 100-107.
  • 2Friedman, M. A mathematical programming model for optimal scheduling for buses depature under determin- istic condition [J]. Transportation Research, 1976, 10 (2) :83-90.
  • 3Gupta,Y P,Gupta,M C,Kumar,A and Sundram,C. A genetic algorithm-based approach to cell composition and layout design problems[J]. Int. Journal of Produc- tion Research, 1996,34 (2) : 447-482.
  • 4Yan,S Y,Lee W T and Shih,Y L. A path-based analo- gous particle swarm optimization algorithm for mini- mum cost network flow problems with concave arc costs[J]. Transportation Planning Journal, 2007, 36 (3) ..393-424.
  • 5Pan,W T. A new evolutionary computation approach: Fruit Fly Optimization Algorithm[C]. 2011 Conference of Digital Technology and innovation Management Tai- pei,2011.
  • 6Pan,W T. A new fruit fly optimization algorithm: Taking the financial distress model as an example[J]. Knowledge-Based Systems, In Press, 2011.
  • 7Tong, L L and Shih, B C. Predict the financial crisis by using grey relation analysis, neural network, and case- based reasoning[J]. Chinese. Manage Rev, 2011,4 (2) : 25-37.
  • 8Deng,J. The control problems of grey system[J]. System & Control Letters, 1982 (5): 288-294.
  • 9Wen, K L, Chang Chien S K. , Yeah C K, Wang, C W and Lin H S. Apply matlab in grey system theory[M]. Chuan Hwa Book Co. Ltd,Taiwan,2006.
  • 10Specht,D. F. Probabilistic neural networks and the poly- nomial adaline as complementary techniques for classifica- tion[J]. IEEE Trans. on Neural Networks, 1990,1 ( 1 ) : 111-121.

共引文献438

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部