期刊文献+

基于HOG图像处理的滚动轴承故障诊断方法 被引量:2

Rolling bearing fault diagnosis method based on HOG image processing
在线阅读 下载PDF
导出
摘要 对于滚动轴承的智能故障诊断问题,文章提出一种基于梯度直方图(histogram of oriented gradient,HOG)图像处理的轴承故障诊断方法。首先将传感器采集到的原始时域振动信号经变分模态分解(variational mode decomposition,VMD)后得到二维图像;再利用HOG数字图像处理算法对上述图像提取特征信息;使用多维尺度分析(multi-dimensional scaling,MDS)方法对特征数据进行降维处理,得到低维空间下的故障特征数据并对故障特征数据添加标签构建数据集,该数据集被划分为训练集和测试集;然后引入遗传算法(genetic algorithm,GA)优化支持向量机(support vector machine,SVM)中的惩罚因子和核函数关键参数,用训练集进行训练得到最优故障分类模型;最后对测试集的数据进行处理,得到分类结果。对比分析结果表明,该文方法能快速提取轴承故障有效特征,提高故障诊断准确率。 For the problem of intelligent fault diagnosis of rolling bearings,a method of bearing fault identification and diagnosis based on histogram of oriented gradient(HOG)image processing algorithm is proposed.Firstly,the original time-domain vibration signal collected by the sensor is subjected to variational mode decomposition(VMD)to obtain a two-dimensional image.The HOG digital image processing algorithm is used to extract the feature information of the above image.Multi-dimensional scaling(MDS)analysis is used to reduce the dimensionality of the feature data to obtain the fault feature data in the low-dimensional space,and labels are added to the fault feature data to construct a data set.The data set is divided into a training set and a test set.Then,the genetic algorithm(GA)is introduced to optimize the penalty factor and the key parameters of the kernel function in the support vector machine(SVM),and the training set is used for training to obtain the optimal fault classification model.Finally,the data of the test set are processed to obtain the classification result.The comparative analysis results show that the method in this paper can quickly extract the effective features of bearing faults and improve the accuracy of fault diagnosis.
作者 李雪原 陈品 陈剑 孙太华 LI Xueyuan;CHEN Pin;CHEN Jian;SUN Taihua(Institute of Sound and Vibration Research,Hefei University of Technology,Hefei 230009,China;Automotive NVH Engineering and Technology Research Center of Anhui Province,Hefei 230009,China)
出处 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第3期309-316,共8页 Journal of Hefei University of Technology:Natural Science
基金 安徽省科技重大专项资助项目(17030901049)。
关键词 梯度直方图(HOG) 图像处理 故障诊断 多维尺度分析(MDS) 滚动轴承 histogram of oriented gradient(HOG) image processing fault diagnosis multi-dimensional scaling(MDS) rolling bearing
作者简介 李雪原(1998-),男,安徽宿州人,合肥工业大学硕士生;通信作者:陈剑(1962-),男,河南固始人,博士,合肥工业大学教授,博士生导师,E-mail:hfgd8216@126.com.
  • 相关文献

参考文献8

二级参考文献56

  • 1陈小全,张继红.基于改进粒子群算法的聚类算法[J].计算机研究与发展,2012,49(S1):287-291. 被引量:31
  • 2孔月萍,曾平,吴自力.Karhunen-Loeve及多尺度金字塔联合变换的彩色逆半调算法[J].光学学报,2007,27(10):1745-1750. 被引量:4
  • 3GRAHAM-ROWE D, GOLDSTON D, DOCTOROW C, et al. Big data: Science in the petabyte era[J]. Nature, 2008, 455(7209): 8-9.
  • 4HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
  • 5KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012: 1097-1105.
  • 6BALDI P, SADOWSKI P, WHITESON D. Searching for exotic particles in high-energy physics with deep learning[J]. Nature Communications, 2014, 5(1): 1-9.
  • 7WORDEN K, STASZEWSKI W J, HENSMAN J J. Natural computing for mechanical systems research: A tutorial overview[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 4-111.
  • 8BENGIO Y. Learning Foundations and Trends 2(1): 1-127. deep architectures for AI[J] in Machine Learning, 2009,.
  • 9ERHAN D, BENGIO Y, COURVILLE A, et al. Why does unsupervised pre-training help deep learning?[J]. The Journal of Machine Learning Research, 2010, 11: 625-660.
  • 10VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th International Conference on Machine Learning, ACM, 2008: 1096-1103.

共引文献2714

同被引文献23

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部