期刊文献+

基于深度学习的二维人体姿态估计研究进展 被引量:3

Research progress on two-dimensional human pose estimation based on deep learning
在线阅读 下载PDF
导出
摘要 人体姿态估计在人体行为识别、人机交互、体育运动分析等方面有着广泛的应用前景,是计算机视觉领域的一个研究热点。在最近的十年中,得益于深度学习技术,大量的研究工作极大地推动了人体姿态估计技术的发展,但由于受训练样本不足、人体姿态的多变性、遮挡、环境的复杂性等因素影响,人体姿态估计仍然面临着诸多的挑战。文中对近年来基于深度学习的2D人体姿态估计方法进行归纳和总结,着重分析一些有代表性的人体姿态估计方法的思路及工作原理,以便研究人员了解当前的研究现状、面临的挑战以及今后的研究方向,拓展研究思路。 Human pose estimation has broad application prospects in human behavior recognition,human computer interaction,sports analysis,and has been a research hotspot in the field of computer vision.In the past decade,thanks to deep learning technology,a large amount of studies have greatly promoted the development of human pose estimation technology.However,due to factors such as insufficient training samples,variability of human pose,occlusion,and complexity of the environment,human pose estimation still faces many challenges.This paper reviews and summarizes the 2D human pose estimation methods based on deep learning in recent years,focusing on analyzing the ideas and principles of some representative human pose estimation methods,so that scholars in this field can understand current research status,challenges,and future directions,and expand their research ideas.
作者 卢官明 卢峻禾 陈晨 LU Guanming;LU Junhe;CHEN Chen(School of Communications and Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China;School of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)
出处 《南京邮电大学学报(自然科学版)》 北大核心 2024年第1期44-55,共12页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家自然科学基金(72074038)资助项目。
关键词 人体姿态估计 单人体姿态估计 多人体姿态估计 深度学习 关键点检测 human pose estimation(HPE) single-person pose estimation multi-person pose estimation deep learning keypoint detection
作者简介 卢官明,男,博士,教授,博士生导师,lugm@njupt.edu.cn。
  • 相关文献

参考文献12

二级参考文献50

  • 1张政馗,庞为光,谢文静,吕鸣松,王义.面向实时应用的深度学习研究综述[J].软件学报,2020(9):2654-2677. 被引量:37
  • 2葛道辉,李洪升,张亮,刘如意,沈沛意,苗启广.轻量级神经网络架构综述[J].软件学报,2020(9):2627-2653. 被引量:54
  • 3Fischler M, Elschlager R.The representation and matching of pictorial structures[J].IEEE Transactions on Computer, 1073,22( 1 ):67-02.
  • 4Felzenszwalb P, Huttenlocher D.Pictorial structures for object recognition[J].lnternational Journal of Computer Vision, 2005,61( 1 ):55-79.
  • 5Ferrari V, Marin-Jimenez M,Zisserman A.Progressive search space reduction for human pose estimation[C]//Proceedings of CVPR 2008.Piscataway,NJ:IEEE Press, 2008:1-8.
  • 6Ramanan D.Learning to parse images of articulated bodies[C]// Proceedings of Neural Information Processing Systems. Massachusetts : MIT Press, 2007 : 1129-1136.
  • 7Andriluka M,Roth S,Schiele B.Pictorial structures revisited: people detection and articulated pose estimation[C]//Proceedings of CVPR 2009.Piscataway, NJ :IEE E Press, 2009 : 1014-1021.
  • 8Ukita N.ArticuIated pose estimation with parts connectivity using discriminative local oriented contours[C]//Proceedings of CVPR 2012.Piscataway o NJ : IEEE Press, 2012 : 3154-3161.
  • 9Sigal k, Black M J.Measure locally,reason globally:occlusion- sensitive articulated pose estimation[C]//Proceedings of CVPR 2006.Piscataway. NJ : I EEE Press, 2006 : 2041-2048.
  • 10Hua Gang, Yang Ming-Hsuan, Wu Ying.Learning to estimate human pose with data driven belief propagation[C]//Pro- ceedings of CVPR 2005.Piscataway, NJ : IEEE Press, 2005 : 747-754.

共引文献141

同被引文献17

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部