期刊文献+

基于高阶应变梯度塑性理论的受限薄层剪切问题研究 被引量:1

STUDY OF CONFINED LAYER PLASTICITY BASED ON HIGHER-ORDER STRAIN GRADIENT PLASTICITY THEORY
在线阅读 下载PDF
导出
摘要 针对受限金属薄层在剪切塑性变形时出现明显尺度效应这一问题,现有理论分析多采用纯剪切假设和传统钝化边界条件,其理论预测与实验结果不符.文章采用黏弹塑性本构模型,对Gudmundson高阶应变梯度塑性理论进行了有限元实现,深入研究了金属薄层受限剪切的塑性变形机理.考虑因界面倾斜引起的附加压应力,采用自定义平面单元对材料的压缩-剪切组合变形进行了有限元模拟.根据表面解锁的物理机制,引入“软-硬”中间态的边界条件.结果表明,在压缩-剪切组合变形条件下,受限薄层的剪切流动应力明显低于纯剪切条件下的流动应力,而压应力的存在降低了剪切屈服强度.利用周期性钝化边界条件,能够定量描述界面处几何必需位错饱和引起的边界条件变化,理论预测与实验结果吻合.相关研究揭示了加载方式和高阶边界条件在受限薄层剪切尺度效应问题中的重要作用. In addressing the size effect observed in the plastic deformation of confined metallic thin layers,existing theoretical analyses have relied on pure shear assumptions and traditional passivation boundary conditions.However,their theoretical predictions are not in agreement with experimental results.In this paper,the finite element implementation of Gudmundson's theory of higher-order strain gradient plasticity is carried out based on the elasto-viscoplastic constitutive model.The method is then applied to study the plastic deformation mechanism in the shear of confined metallic layers.This study considers the additional compressive stress resulting from the inclined interface,and the combined compression-shear deformations are modeled through the user-defined plane element.In addition,a"soft-hard"boundary condition corresponding to the intermediate state is also introduced according to the physical context of surface unlocking.The results demonstrate that the shear flow stress of the confined layer under combined compressive and shear loads is significantly lower than that of the confined layer under pure shear,indicating that compressive stress dramatically reduces the yielding shear stress.The transition of the boundary condition due to the saturation of geometrically necessary dislocations at the interface is quantitatively characterized using the periodically passivated boundary condition.The theoretical predictions are in agreement with experimental data.The study emphasizes the importance of loading and boundary conditions in the size-dependent plasticity of confined layers.
作者 华奋飞 罗彤 雷剑 刘大彪 Hua Fenfei;Luo Tong;Lei Jian;Liu Dabiao(School of Aerospace Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment,Wuhan 430074,China)
出处 《力学学报》 EI CAS CSCD 北大核心 2024年第2期399-408,共10页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(12002129,11702103) 湖北省自然科学基金(2022CFB288)资助项目。
关键词 应变梯度塑性 剪切变形 尺度效应 钝化效应 高阶边界条件 strain gradient plasticity shear deformation size effect passivation effect higher-order boundary condition
作者简介 通讯作者:刘大彪,教授,第二届中国科协青托工程入选者,主要研究方向为实验固体力学、微尺度塑性力学.E-mail:dbliu@hust.edu.cn。
  • 相关文献

参考文献3

二级参考文献25

  • 1Nye, J.E: Some geometrical relations in dislocated crystals. Acta Metall. 1, 153-162 (1953).
  • 2Ashby, M.F.: The deformation of plastically non-homogeneous alloys. Philos. Mag. 21,399-424 (1970).
  • 3Groma, I.: Link between the microscopic and mesoscopic length- scale description of the collective behavior of dislocations. Phys. Rev. B 56, 5807-5813 (1997).
  • 4Evans, A.G., Hutchinson, J.W.: A critical assessment of strain gra- dient plasticity. Acta Mater. 57, 1675-1688 (2009).
  • 5Fleck, N.A., Muller, G.N., Ashby, M.F., et al.: Strain gradient plas- ticity: theory and experiment. Acta Metall. et Mater. 42, 475-487 (1994).
  • 6Nix, W.D., Gao, H.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411- 425 (1998).
  • 7Gudmundson, P.: A unified treatment of strain gradient plasticity. J. Mech. Phys. Solids 49, 1379-1406 (2004).
  • 8Gurtin, M.E.: On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids 48, 989-1036 (2000).
  • 9Van der Giessen, E., Needleman, A.: Discrete dislocation plasticity: a simple planar model. Model. Simul. Mater. Sci. Eng. 3, 689-735 (1995).
  • 10Shu, J.Y., Fleck, N.A., van der Giessen, E., et al.: Boundary layers in constrained plastic flow: comparison of nonlocal and discrete dislocation plasticity. J. Mech. Phys. Solids 49, 1361-1395 (2001).

共引文献42

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部