摘要
为拓展整数阶微分系统的已有结果,研究了一类具有多个时滞的Caputo分数阶线性微分系统。运用不可交换矩阵的多项式定理,在不要求系数矩阵可交换的前提下,得到了系统的精确解表示。研究结果表明,该系统在有限时间内Hyers-Ulam稳定。
In order to To extend the existing results of differential systems of integer order,we have considered a class of Caputo fractional linear differential systems with multiple delays were considered.By applying the multinomial theorem for nonpermutable matrices without a commutativity assumption on the matrix coefficients,the representations of exact solutions for the studied systems were obtained.The results show that Hyers-Ulam stability in finite time is proved holds for this class of systems.
作者
邬忆萱
寇春海
WU Yixuan;KOU Chunhai(College of Science,Donghua University,Shanghai 201620,China)
出处
《东华大学学报(自然科学版)》
CAS
北大核心
2024年第1期152-162,共11页
Journal of Donghua University(Natural Science)
基金
上海市自然科学基金(19ZR1400500)。
作者简介
通信作者:寇春海,男,教授,研究方向为稳定性分析与设计,E-mail:kouchunhai@dhu.edu.cn。