期刊文献+

Slide-Detect:An Accurate Deep Learning Diagnosis of Lung Infiltration 被引量:1

原文传递
导出
摘要 Lung infiltration is a non-communicable condition where materials with higher density than air exist inthe parenchyma tissue of the lungs. Lung infiltration can be hard to be detected in an X-ray scan even for aradiologist, especially at the early stages making it a leading cause of death. In response, several deeplearning approaches have been evolved to address this problem. This paper proposes the Slide-Detecttechnique which is a Deep Neural Networks (DNN) model based on Convolutional Neural Networks (CNNs)that is trained to diagnose lung infiltration with Area Under Curve (AUC) up to 91.47%, accuracy of 93.85%and relatively low computational resources.
出处 《Data Intelligence》 EI 2023年第4期1048-1062,共15页 数据智能(英文)
作者简介 Corresponding author:Ahmed E.Mohamed(E-mail:Ahmed.E.Mohamed@eng1.cu.edu.eg,ORCID:0000-0002-0030-8780).
  • 相关文献

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部