期刊文献+

多元信息监督的遥感图像有向目标检测 被引量:3

Multi-information supervision in optical remote sensing images
原文传递
导出
摘要 遥感图像有向目标检测是遥感图像解译中的一项基础任务,在许多领域有着广泛的应用。由于遥感图像目标尺度差异性大、方向任意且紧密排列,传统目标检测所使用的水平框无法准确的定位目标。因此,遥感图像有向目标检测成为目前遥感领域的研究热点。受益于深度学习的发展,遥感图像有向目标检测取得了突破性进展,但是大多数方法仅在检测头部加入角度预测参数,在训练过程中没有充分利用角度信息和语义信息。本文提出了一种多元信息监督的遥感图像有向目标检测方法。首先,在感兴趣区域提取阶段利用角度信息监督网络学习目标方向,从而使网络第一阶段生成更加贴近遥感图像目标的有向候选区域。其次,为了充分利用图像语义信息,本文在网络第二阶段增加语义分支,并使用图像语义标签进行监督学习。本文以Faster R-CNN OBB为基准,在DOTA数据集上验证所提方法的有效性。本文方法相比基准,平均精度(mAP)提升了2.8%,最终的检测精度(mAP)达到74.6%。 Oriented object detection is a basic task in the interpretation of high-resolution remote sensing images.Compared with general detectors,oriented detectors can locate instances with oriented bounding boxes,which are consistent with arbitrary-oriented ground truths in remote sensing images.Currently,oriented object detection has greatly progressed with the development of the convolutional neural network.However,this task is still challenging because of the extreme variation in object scales and arbitrary orientations.Most oriented detectors are evolved from horizontal detectors. They first generate horizontal proposals using the Region Proposal Network (RPN). Then,they classify these proposals into different categories and transform them into oriented bounding boxes. Despite their success, thesedetectors exploit only the annotations at the end of the network and do not fully utilize the angle and semantic information.This work proposes an Angle-based Region Proposal Network (ARPN), which learns the angle of objects and generates orientedproposals. The structure of ARPN is the same as that of RPN. However, for each proposal, instead of outputting four parameters forregression, ARPN generates five parameters, which are the center (x, y), shape (w, h), and angle (t). In the training, we first assign anchorswith ground truths by the Intersection of Unions. Then, we directly supervise the ARPN with the shape and angle information of groundtruths. We also propose a semantic branch to output image semantic results for utilizing the advantage of the semantic information. Thesemantic branch consists of two convolutional layers and is parallel with the detection head. We first assign objects to different scale levelsaccording to their areas. Then, we create semantic labels in each scale and use them to supervise the semantic branch. With the semanticinformation supervision, the model will learn translation-variant features and improve accuracy. Moreover, the outputs of the semanticbranch indicate the objectness in each place, which can filter out false positives of final predictions.We conduct comprehensive experiments on the DOTA dataset to validate the effectiveness of the proposed methods. In the datapreparation, we first crop original images into 1024×1024 patches with the stride of 824. Compared with the baseline, the ARPN achieves a2.2% increase in mAP, while the semantic branch contributes an additional 0.8% improvement in mAP. Finally, we combine both methodsand achieve a 74.64% mAP, which is competitive with those obtained by other oriented object detectors. We visualize some results on theDOTA dataset. The results show that our method is highly effective for small objects and densely packed objects.We proposed ARPN and the semantic branch to utilize the multi-information in remote sensing images. The ARPN can directlygenerate oriented proposals, which can lead to better recall of oriented objects. The semantic branch increases the translation-variantproperty of the features. Experiments demonstrate the effectiveness of our method, which achieves a 74.64% mAP on the DOTA dataset. Inthe future works, we will focus on the model efficiency and the inference speed.
作者 王家宝 程塨 谢星星 姚艳清 韩军伟 WANG Jiabao;CHENG Gong;XIE Xingxing;YAO Yanqing;HAN Junwei(School of Automation,Northwestern Polytechnical University,Xi’an 710129,China)
出处 《遥感学报》 EI CSCD 北大核心 2023年第12期2726-2735,共10页 NATIONAL REMOTE SENSING BULLETIN
基金 国家自然科学基金(编号:61772425) 陕西省杰出青年科学基金(编号:2021JC-16)。
关键词 目标检测 有向目标检测 区域建议提取 多元信息 遥感图像 object detection oriented object detection region proposal generation multi-information remote sensing images
作者简介 第一作者:王家宝,研究方向为高分辨率遥感图像理解。E-mail:jbwang@mail.nwpu.edu.cn;通信作者:程塨,研究方向为高分辨率遥感图像理解。E-mail:gcheng@nwpu.edu.cn。
  • 相关文献

参考文献7

二级参考文献30

共引文献190

同被引文献20

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部