期刊文献+

环Z/(2^(29)-1)上本原序列的密码性质分析及其高效并行设计实现

Cryptographic Property Analysis of Primitive Sequences over Z/(2^(29)-1)and Their Efficient Parallel mplementation
在线阅读 下载PDF
导出
摘要 随着相关攻击和代数攻击的发展,采用非线性驱动已然成为当前序列密码算法设计的主流,如何设计非线性驱动部件以及分析相应的密码性质是当前序列密码领域研究的重要课题。首次提出基于环Z/(2^(29)-1)设计和分析非线性驱动序列;然后,基于Galois分级扩散的思想,给出了环Z/(2^(29)-1)上本原序列高效并行设计实现的方法和技术,并给出了一个24级本原多项式设计的具体实例。分析表明,该实例的软件实现性能相比传统Fibonacci实现方式提升了约8.7倍。 With the development of correlation attacks and algebraic attacks,recently proposed stream ciphers are mostly based on nonlinear driving sequences.How to design nonlinear driving se-quences and analyze their corresponding cryptographic properties is an important topic in the field of stream ciphers.A class of nonlinear driving sequences over Z/(2^(29)-1)are proposed for the first time and their corresponding cryptographic properties are also analyzed.Then,based on Galois model,the methods and techniques for efficient parallel design of primitive sequences on Z/(2^(29)-1)are given,and a concrete design of a 24-order primitive polynomial is also given.Finally,it is shown that the software implementation performance of this example is about 8.7 times higher than that of the tradi-tional Fibonacci implementation.
作者 许丹丹 朱伟浩 豆亚芳 XU Dandan;ZHU Weihao;DOU Yafang(Zhengzhou Xinda Institute of Advance Technology,Zhengzhou 450001,China)
出处 《信息工程大学学报》 2023年第6期725-733,共9页 Journal of Information Engineering University
基金 国家自然科学基金资助项目(61872383)。
关键词 序列密码 线性递归序列 本原序列 Galois并行设计 stream ciphers linear recurring sequences primitive sequences Galois-parallel design
作者简介 许丹丹(1986-),女,硕士,主要研究方向为序列密码设计与分析。
  • 相关文献

参考文献2

二级参考文献8

  • 1Klapper, A. , Goresky, M. , 2-adic shift registers, Fast Software Encryption LNCS 809, New York.Springer Verlag, 1994,174-178.
  • 2Klapper, A. , Goresky, M. , Large period nearly deBrujin FCSR sequences, Advances in Cryptology-Eurocrypt 1995 ,LNCS 921 ,New York :Springer Verlag, 1995,263-273.
  • 3Klapper A., Goresky M., Feedback shift registers, 2-adic span, and combiners with memory, J.Cryptology, 1997,10: 111-147.
  • 4Klapper A. , Goresky M. , Arithmetic cross-correlation of FCSR Sequences, IEEE Trans. Infom Theory,1997,36:842-846.
  • 5Goresky,M. ,Klapper A. ,Fourier transforms and the 2-adic span of periodic binary sequences,IEEE Trans. Infom. Theory, 2000,46 (2) : 687-691.
  • 6Rueppel ,R. ,Analysis and Design of Stream Ciphers ,New York:Springer Verlag,1986.
  • 7Seo,C. ,LEE,S. ,Sung,Y. ,et al. ,A lower bound on the linear span of an FCSR,IEEE Trans. Infom.Theory, 2000,46 (2) : 691-693.
  • 8Lidl, R., Niederreiter, H., Finite Fields, Encyclopaedia of mathematics and its applications 20,Combridge ,Cambridge University Press, 1983.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部