摘要
随着相关攻击和代数攻击的发展,采用非线性驱动已然成为当前序列密码算法设计的主流,如何设计非线性驱动部件以及分析相应的密码性质是当前序列密码领域研究的重要课题。首次提出基于环Z/(2^(29)-1)设计和分析非线性驱动序列;然后,基于Galois分级扩散的思想,给出了环Z/(2^(29)-1)上本原序列高效并行设计实现的方法和技术,并给出了一个24级本原多项式设计的具体实例。分析表明,该实例的软件实现性能相比传统Fibonacci实现方式提升了约8.7倍。
With the development of correlation attacks and algebraic attacks,recently proposed stream ciphers are mostly based on nonlinear driving sequences.How to design nonlinear driving se-quences and analyze their corresponding cryptographic properties is an important topic in the field of stream ciphers.A class of nonlinear driving sequences over Z/(2^(29)-1)are proposed for the first time and their corresponding cryptographic properties are also analyzed.Then,based on Galois model,the methods and techniques for efficient parallel design of primitive sequences on Z/(2^(29)-1)are given,and a concrete design of a 24-order primitive polynomial is also given.Finally,it is shown that the software implementation performance of this example is about 8.7 times higher than that of the tradi-tional Fibonacci implementation.
作者
许丹丹
朱伟浩
豆亚芳
XU Dandan;ZHU Weihao;DOU Yafang(Zhengzhou Xinda Institute of Advance Technology,Zhengzhou 450001,China)
出处
《信息工程大学学报》
2023年第6期725-733,共9页
Journal of Information Engineering University
基金
国家自然科学基金资助项目(61872383)。
作者简介
许丹丹(1986-),女,硕士,主要研究方向为序列密码设计与分析。