摘要
命名实体识别(NER)任务的准确性将促进自然语言领域中诸多下游任务的研究。由于文本中存在大量嵌套语义,导致命名实体识别困难,成为自然语言处理中的难点。以往研究提取特征尺度单一,边界信息利用不够充分,忽略了不同尺度下的许多细节信息,从而造成实体识别错误或遗漏的情况。针对上述问题,提出一种多尺度注意力的命名实体识别方法(MSA-NER)。首先,利用BERT模型得到包含上下文信息的表示向量,并通过BiLSTM网络加强文本的上下文表示。其次,将表示向量进行枚举拼接形成跨度信息矩阵,并融合方向信息获得更丰富的交互信息。然后,利用多头注意力构建多个子空间,通过二维卷积在每个子空间下可选地聚合不同尺度的文本信息,在每个注意力层同时进行多尺度的特征融合。最后,将融合的矩阵进行跨度分类以识别命名实体。实验表明,该方法在GENIA和ACE2005英文数据集上F1分别达到81.7%和86.8%,与现有主流模型相比有更好的识别效果。
The accuracy of named entity recognition(NER)task will promote the research of multiple downstream tasks in natural language field.Due to a large number of nested semantics in text,named entities are recognized dif-ficultly.Recognizing nested semantics becomes a difficulty in natural language processing.Previous studies have single scale of extracting feature and under-utilization of the boundary information.They ignore many details under different scales and then lead to the situation of entity recognition error or omission.Aiming at the above problems,a multi-scale attention method for named entity recognition(MSA-NER)is proposed.Firstly,the BERT model is used to obtain representation vector containing context information,and then the BiLSTM network is used to strengthen the context representation of text.Secondly,the representation vectors are enumerated and concatenated to form span information matrix.The direction information is fused to obtain richer interactive information.Thirdly,multi-head attention is used to construct multiple subspaces.Two-dimensional convolution is used to optionally ag-gregate text information at different scales in each subspace,so as to implement multi-scale feature fusion in each at-tention layer.Finally,the fused matrix is used for span classification to identify named entities.Experimental results show that the F1 score of the proposed method reaches 81.7%and 86.8%on GENIA and ACE2005 English datasets,respectively.The proposed method demonstrates better recognition performance compared with existing mainstream models.
作者
唐瑞雪
秦永彬
陈艳平
TANG Ruixue;QIN Yongbin;CHEN Yanping(School of Information,Guizhou University of Finance and Economics,Guiyang 550025,China;College of Computer Science and Technology,Guizhou University,Guiyang 550025,China;State Key Laboratory of Public Big Data,Guiyang 550025,China)
出处
《计算机科学与探索》
CSCD
北大核心
2024年第2期506-515,共10页
Journal of Frontiers of Computer Science and Technology
基金
贵州省省级科技计划项目(黔科合基础ZK[2022]一般027)。
作者简介
通信作者:唐瑞雪(1987-),女,贵州人,博士研究生,主要研究方向为自然语言处理、信息抽取、机器学习。E-mail:trx_0401@163.com;秦永彬(1980-),男,山东人,博士,教授,博士生导师,CCF高级会员,主要研究方向为智能计算、机器学习、算法设计。;陈艳平(1980-),男,贵州人,博士,副教授,CCF会员,主要研究方向为人工智能、自然语言处理等。