期刊文献+

基于广义S变换和并联神经网络的结构损伤识别研究

Study on structural damage identification based on generalized S-transform and parallel neural network
在线阅读 下载PDF
导出
摘要 目前在利用CNN网络提取特征的结构损伤识别研究中,仅仅利用1D-CNN和2D-CNN提取的特征进行损伤识别存在准确率低、识别效率不高等问题。提出了一种基于广义S变换和并联神经网络的结构损伤识别方法。为了丰富输入信号的特征维度,利用广义S变换将滤波后的信号转化成时频图,并同时将一维加速度响应信号和二维时频图分别输入1D-CNN和2D-CNN中进行时域和时频域特征提取,并在汇聚层进行特征拼接,然后通过FC层和Softmax层对损伤识别结果进行分类。利用IASC-ASCE SHM Benchmark结构第二阶段试验数据对所提出的并联网络模型进行验证,结果表明,所提出的网络模型与其他同类方法相比具有更高的识别精度和识别效率。 Among the existing researches on structural damage identification that use CNN network to extract features,problems such as low accuracy and low recognition efficiency can be found when only 1D-CNN and 2D-CNN are used to extract features for damage identification.Therefore,this paper proposes a structural damage identification method based on generalized S-transform and parallel neural network.In order to enrich the feature dimensions of the input signal,the filtered signal is converted into a time-frequency diagram by using the generalized S-transform.At the same time,the one-dimensional acceleration response signal and the two-dimensional time-frequency diagram are input into 1D-CNN and 2D-CNN respectively for time-frequency and time-frequency feature extraction,and the characteristics are spliced in the convergence layer.Then,the damage identification results are classified through FC layer and Softmax layer.The proposed parallel network model is verified by the second-stage test data of IASC-ASCE SHM Benchmark structure.The results show that the proposed network model has higher identification accuracy and efficiency than other similar methods.
作者 李行健 吕建达 赵凌云 刁延松 LI Xingjian;L Jianda;ZHAO Lingyun;DIAO Yansong(School of Civil Engineering,Qingdao University of Technology,Qingdao 266525,China)
出处 《青岛理工大学学报》 CAS 2024年第1期26-35,共10页 Journal of Qingdao University of Technology
基金 山东省自然科学基金资助项目(ZR2021ME239)。
关键词 损伤识别 广义S变换 卷积神经网络 时频分析 特征融合 damage identification generalized S-transform convolution neural network time-frequency analysis feature fusion
作者简介 李行健(1997-),男,江苏无锡人。硕士,研究方向为结构损伤识别。E-mail:1448707274@qq.com;通信作者:刁延松(1968-),男,山东烟台人。工学博士,教授,主要从事结构损伤识别及钢结构等方面的研究。E-mail:diaoys@163.com。
  • 相关文献

参考文献2

二级参考文献23

  • 1吴思瑶,姜绍飞,傅大宝.基于支持向量机的结构损伤识别研究[J].海峡科学,2012(8):32-36. 被引量:1
  • 2杨家兴,周舜云.信号分析与处理的几种新方法[J].信息工程学院学报,1995,14(3):1-9. 被引量:51
  • 3胡金海,谢寿生,侯胜利,尉询楷,何卫锋.核函数主元分析及其在故障特征提取中的应用[J].振动.测试与诊断,2007,27(1):48-52. 被引量:24
  • 4孙宗宝,孙名松.基于核主成分提取和支持向量机的入侵检测[J].信息技术,2007,31(7):29-31. 被引量:7
  • 5Sumitoro S, Matsui Y, Kono M, Okamoto T, Fujii K.Long span bridge health monitoring system in Japan [C].SPIE, 2001, 4337: 517-524.
  • 6Wong K Y, Lau C K, Flint A R. Planning and implementation of the structural health monitoring system for cable-supported bridges in Hong Kong [C].SPIE, 2000, 3995: 266-275.
  • 7Ko J M, Sun Z G, Ni Y Q. Multi-stage identification scheme for detecting damage in cable-stayed Kap Shui Mun bridge [J]. Engineering Structures, 2002, 24(7):857-868.
  • 8Ko J M, Ni Y Q. Development of vibration-based damage detection methodology for civil engineering structures [C]. Proceedings of the 1st International Conference on Structural Engineering, Kunming, China,1999. 37-56.
  • 9Charles R Farra, Hoon Sohn, Michael L Fugate, Jerry J.Czarnecki. Integrated structural health monitoring [C].Proc. SPIE Int. Soc. Opt. Eng., 2001,4335: 1-8.
  • 10Chan T H T, Ni Y Q, Ko J M. Neural network novelty filtering for anomaly detection of Tsing Ma Bridge cables[C]. Structural Health Monitoring 2000, Pennsylvania,1999. 430-439.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部