期刊文献+

基于SGMD的CNN-BiGRU光伏功率预测

CNN-BiGRU photovoltaic power prediction based on SGMD
在线阅读 下载PDF
导出
摘要 为准确预测光伏电站的发电功率,帮助电网调度部门制定合理的调度计划,文章提出一种基于SGMD(Symplectic Geometry Mode Decomposition)、CNN(Convolutional Neural Networks)和BiGRU(Bidirectional Gate Recurrent Unit)的光伏发电功率预测模型。首先,利用辛几何分解将历史功率分解为不同模态;其次,结合天气数据输入CNN-BiGRU组合模型进行预测;最后,将预测结果整合。该模型选用新疆某光伏电站2019年运行数据分别在短期与中长期不同预测范围内进行预测实验,实验结果表明,此模型的通用性和辛几何分解算法在提高光伏功率预测精度上具有一定的研究价值。 To accurately predict the power generation of photovoltaic power plants and assist the power grid scheduling department in making scheduling plans.Propose a photovoltaic power generation power prediction model based on symbolic geometry mode decomposition,rotational neural networks,and bidirectional gate current unit.Firstly,the historical power is decomposed into different modes using symplectic geometric decomposition,and then combined with weather data input into the CNN-BiGRU combination model for prediction.Finally,the prediction results are integrated.The 2019 operating data of a photovoltaic power station in Xinjiang was selected for prediction experiments and comparison experiments in different short-term and medium to long-term prediction ranges,verifying the universality of this model and the good research value of the symplectic geometric decomposition algorithm in improving the accuracy of photovoltaic power prediction.
作者 邹邦杰 刘国巍 Zou Bangjie;Liu Guowei(School of Electrical and Information Engineering,Anhui University of Science and Technology,Huainan 232001,China)
出处 《无线互联科技》 2023年第23期128-130,共3页 Wireless Internet Technology
关键词 光伏功率预测 辛几何模态分解 卷积神经网络 双向门控单元 photovoltaic power forcasting symplectic geometry mode decomposition convolutional neural networks bidirectional gate recurrent unit
作者简介 邹邦杰(1999-),男,安徽六安人,硕士研究生,研究方向:电力电子与新能源。
  • 相关文献

参考文献8

二级参考文献166

  • 1董雷,周文萍,张沛,刘广一,李伟迪.基于动态贝叶斯网络的光伏发电短期概率预测[J].中国电机工程学报,2013,33(S1):38-45. 被引量:77
  • 2杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:587
  • 3侯文.对应用主成分法进行综合评价的探讨[J].数理统计与管理,2006,25(2):211-214. 被引量:49
  • 4刘念,张清鑫,李小芳.基于核函数极限学习机的分布式光伏短期功率预测[J].农业工程学报,2014,30(4):152-159.
  • 5Shi Jie,Lee Weijei,Liu Yongqian.Forecasting power out of photovoltaic systems based on weather classification and support vector machines[J].IEEE Transactions on Industry Application,2012,48(3):1064-1069.
  • 6Chen Xia,Dong Zhaoyang,Meng Ke.Electricity price forecasting with extreme learning machine and bootstrapping[J].IEEE Transactions on Power Systems,2012,27(4):2055-2062.
  • 7Wu Ji,Chan C K.Prediction of hourly solar radiation using a novel hy brid model of ARMA and TDNN[J].Solar Energy,2011,85(5):808-817.
  • 8Huang N E,Shen Z,Long S R.The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J].Proceedings of the Royal Society of London Series A,1998,454:903-995.
  • 9Guang Bin Huang,Qin Yu Zhu,Chee Kheong Siew.Extreme learning ma chine:Theory and applica-tions[J].Science Direct,2006,70:489-501.
  • 10Hussain T N,Su LAI,Man S I,et al.A hybrid artificial neural network for grid-connected photovoltaic system output prediction[A].Proceedings of 2013 IEEE Symposium on Computers&Informatics(ISCI)[C].Langkawi:IEEE,2013.108-111.

共引文献652

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部