摘要
In order to better analyze the characteristics of particle distribution and its influencing factors in the ionized space during the process of coaxial dielectric barrier discharge,a self-designed two-dimensional axisymmetric structure exciter was used to carry out optical diagnosis,with the electron temperature calculated through Gaussian fitting.A plasma model was applied to conduct research on the discharge process through numerical simulation,with the changes in electron density and electron temperature were analyzed by using different discharge parameters.The research results show that with an increase in discharge voltage,pressure inside the reactor and relative permittivity,the discharge process is promoted.In addition,a rise in current density leads to an increase in the number of charged particles on the surface of the medium during the discharge process,while a rise in discharge intensity causes an increase in the electron density.Electron temperature decreases due to the increased loss of collision energy between particles.These results were confirmed by comparing experimental data with simulation results.
作者
刘桂铭
陈雷
赵智博
宋鹏
Guiming Liu;Lei Chen;Zhibo Zhao;Peng Song(Liaoning Key Laboratory of Advanced Measurement and Test Technology for Aviation Propulsion System,Shenyang Aerospace University,Shenyang 110136,China;College of Mechanical and Electrical Engineering,Dalian Minzu University,Dalian 116600,China)
基金
Project supported by the National Natural Science Foundation of China (Grant Nos.51509035 and 51409158)
the Project of Shenyang Science and Technology Bureau (Grant No.RC200010)
the National Natural Science Foundation of Liaoning Province of China (Grant No.2020-KF-13-03)。
作者简介
Corresponding author:陈雷.E-mail:chenlei@sau.edu.cn。