期刊文献+

基于信道排序的认知频谱分配算法

A Cognitive Spectrum Allocation Algorithm Based on Channel Ranking
在线阅读 下载PDF
导出
摘要 针对认知传感网中均衡能耗的频谱分配问题,提出了一种适应信道的改进遗传算法(Adapt channel improved genetic algorithm,ACGA)进行频谱分配。为改良遗传算法中传统交叉方法运用于频谱分配问题时面临的交叉失效等问题,采用一种基于信道排序的交叉方案,以信道排序的增益作为交叉的限制,并利用个体相似度进行交叉基因的选取。为增加遗传变异的可靠性,采用了一种混合变异方案,利用博弈对个体进行良性变异,同时组合传统变异以控制种群的整体进化方向。仿真实验表明,相比传统的遗传算法,所提算法有着良好的寻优能力,可以有效降低网络的周期能耗。 Aiming at the spectrum allocation problem of balanced energy consumption in cognitive sensor networks,an adapt channel improved genetic algorithm is proposed for spectrum allocation.In order to avoid the crossover failure and other problems faced by the traditional crossover method in the genetic algorithm when it is applied to the spectrum allocation problem,a crossover scheme based on channel sorting is adopted,and the selection of crossover gene is carried out according to individual similarity.To increase the reliability of genetic variation,a mixed mutation scheme is adopted,using games to mutate individuals benignly,while combining traditional mutations to control the overall evolutionary direction of the population.Simulation experiments show that,compared with the traditional genetic algorithm,the proposed algorithm has good optimization ability and can effectively reduce the periodic energy consumption of the network.
作者 蒋孜浩 郑安琪 秦宁宁 JIANG Zihao;ZHENG Anqi;QIN Ningning(Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education,Jiangnan University,Wuxi Jiangsu 214122,China)
出处 《传感技术学报》 CAS CSCD 北大核心 2023年第10期1635-1642,共8页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(61702228) 江苏省自然基金项目(BK20170198)。
关键词 认知传感网 频谱分配 网络能耗 遗传算法 cognitive sensor network spectrum allocation network energy consumption genetic algorithm
作者简介 蒋孜浩(1997-),男,硕士研究生,研究方向为无线传感器网络;郑安琪(1995-),女,硕士研究生,研究方向为无线传感器网络;通讯作者:秦宁宁(1980-),女,黑龙江虎林人,教授,博士,从事无线传感器网络的研究,ningning801108@163.com。
  • 相关文献

参考文献8

二级参考文献67

  • 1韦柳涛,曾庆川,姜铁兵,虞锦江,黄定疆.启发式遗传基因算法及其在电力系统机组组合优化中的应用[J].中国电机工程学报,1994,14(2):67-72. 被引量:27
  • 2刘小洪,邹鹏.商业银行客户关系价值管理模型研究[J].管理科学,2005,18(3):57-60. 被引量:8
  • 3Callaway E J. Wireless Sensor Networks: Architechures and Protocols[M]. US: CRC Press LLC, 2003 : 1-17.
  • 4Cavalcanti D, Das S, Wang Jian-feng, et al. Cognitive Radio based Wireless Sensor Networks[C]//Proceedings of 17th In- ternational Conference on Computer Communications and Net- works( ICCCN' 08). St. Thomas, US Virgin Islands, Aug. 2008 1-6.
  • 5Mitola J. Cognitive Radi0:An Integrated Agent Architecture for Software Defined Radio[D]. Sweden: Royal Institute of Tech- nology(KTH), 2000.
  • 6Akan O B, Karli O B, Ergul O. Cognitive Radio Sensor Networks [J]. IEEE Networks, 2009 (7/8) : 34-40.
  • 7Yau K-L A, Komisarczuk P, Teal P D. Cognitive Radio-based Wireless Sensor Networks: Conceptual Design and Open Issues [C]//The 2nd IEEE Workshop on Wirelss and Internet Services(WISe 2009). Zurich, Switzerland: 2009 : 955-962.
  • 8陆佃杰 黄晓霞.认知无线电在无线传感器网络中的应用.先进技术研究通报,2009,(11):18-22.
  • 9Zahmati A S, Hussain S, Femando X, et al. Cognitive Wireless Sensor Networks: Emerging topics and recent challenges[C]// Science and Technology for Humanity (TIC-STH), 2009 IEEE Toronto International Conference. Toronto, Sept. 2009:593-596.
  • 10Han N,Shon S H,Joo J O, et al. Spectrum Sensing Method for Increasing the Spectrum Effieieney in Wireless Sensor Network [J]. Uhiguitous Computing Systems, 2006,4239 : 478-488.

共引文献386

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部