摘要
Commercialization of perovskite solar cells(PSCs) requires the development of high-efficiency devices with none current density-voltage(J-V) hysteresis. Here, electron transport layers(ETLs) with gradual change in work function(WF) are successfully fabricated and employed as an ideal model to investigate the energy barriers, charge transfer and recombination kinetics at ETL/perovskite interface. The energy barrier for electron injection existing at ETL/perovskite is directly assessed by surface photovoltage microscopy, and the results demonstrate the tunable barriers have significant impact on the J-V hysteresis and performance of PSCs. By work function engineering of ETL, PSCs exhibit PCEs over 21% with negligible hysteresis. These results provide a critical understanding of the origin reason for hysteresis effect in planar PSCs, and clear reveal that the J-V hysteresis can be effectively suppressed by carefully tuning the interface features in PSCs. By extending this strategy to a modified formamidinium-cesium-rubidium(FA-Cs-Rb) perovskite system, the PCEs are further boosted to 24.18%. Moreover, 5 cm × 5 cm perovskite mini-modules are also fabricated with an impressive efficiency of 20.07%, demonstrating compatibility and effectiveness of our strategy on upscaled devices.
基金
supported by the National Natural Science Foundation of China (Grant No. NSFC62004182)
the Career Development Grant of Institute of Chemical Materials (Grant No. STB-2021-10)
the Sichuan Science and Technology Program (Grant No. 2022JDRC0021)。
作者简介
Corresponding authors:Bing Cai.bingcai@caep.cn;Corresponding authors:Xiaojia Zheng.xiaojia@caep.cn。