期刊文献+

低渗透率智能网联环境下高风险事件预警方法 被引量:2

Early Warning Methods for Traffic High-risk Events Under Low Penetration of Connected and Autonomous Vehicles
在线阅读 下载PDF
导出
摘要 提出一种低渗透率智能网联环境下高风险事件预警方法。具体而言,基于熵能表征系统状态的特点提出交通熵的概念,将个体车辆的微观驾驶行为量化为交通熵,以表征交通流状态;再将交通熵作为长短时记忆网络模型(Long Short⁃term Memory,LSTM)的输入参数建立预警模型;最后,使用HighD轨迹数据集提取高风险事件,并验证模型有效性。结果显示,使用交通熵的模型误报率和漏报率大幅降低。以智能车渗透率10%为例,误报率和漏报率分别从6.18%和11.47%下降到了1.95%和3.12%;在预测模式下,对高风险事件误报率和漏报率为2.28%和3.82%。 We propose an early warning method for high-risk events of traffic operation under low penetration of connected and autonomous vehicles(CAVs).Specifically,we first define the concept of traffic entropy,and quantifies the micro driving behavior of individual vehicles as a parameter represented by traffic entropy,which is used to characterize the state of macroscopic traffic flow.And then the traffic entropy is used as the input parameter of the Long Short-Term Memory(LSTM)model to establish the early warning model of high-risk events.The HighD Dataset from German highways was utilized for the empirical analyses.In order to compare the application results under CAVs environment,an autonomous-vehicles scenario and a connected-vehicles scenario were set for the high-risk events and non-risk events extracted from the HighD Dataset.and the effectiveness of the warning of high-risk events under different vehicle permeability was compared.Results show that,the false alarm and missed alarm rates of early warning model with traffic entropy parameters are both reduced.Taking the low-penetration CAVs of 10%as an example,the false alarm and missed alarm rates reduced from 6.18%and 11.47%to 1.95%and 3.12%,respectively.At the same time,the false alarm and missed alarm rates are only 2.28%and 3.82%under the prediction environment.
作者 陈晓芸 叶颖俊 余荣杰 孙剑 CHEN Xiaoyun;YE Yingjun;YU Rongjie;SUN Jian(Key Laboratory of Road and Traffic Engineering of the Ministryof Education,Tongji University,Shanghai 201804,China)
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第10期1595-1605,共11页 Journal of Tongji University:Natural Science
基金 国家重点研究发展计划(2018YFB1600505) 国家自然科学基金重点项目(52125208) 浙江省重点研发计划(2021C01011)。
关键词 交通安全 智能网联交通 高风险事件 交通熵 预警模型 低渗透率 traffic safety connected and autonomous vehicles(CAVs) high-risk event traffic entropy early-warning model low penetration
作者简介 第一作者:陈晓芸(1993—),女,工学博士,主要研究方向为交通运行建模与仿真、驾驶行为研究。E-mail:1610753@tongji.edu.cn;通信作者:孙剑(1979—),男,教授,博士生导师,工学博士,主要研究方向为交通流理论与仿真,智能网联汽车与车路协同。E-mail:sunjian@tongji.edu.cn。
  • 相关文献

参考文献2

二级参考文献20

  • 1WANG Dianhai, CHEN Xuewen, YANG Shaohui. Analysis of traffic bottleneck on Beijing urban expressway[M]. Beijing: China Communications Press, 2007.
  • 2Federal Highway Administration. Traffic congestion and reliability trends and advanced strategies for congestion mitigation [ R]. Washington D C.- US Department of Transportation, Federal Highway Administration, 2005.
  • 3Lee C, Hellinga B, Saccomanno F. Real-time crash prediction model for application to crash prevention in freeway traific[J]. Transportation Research Record, 2003( 1840): 67.
  • 4Abdel-Aty M, Uddin N, Pande A, et al. Predicting freeway crashes from loop detector data by matched case-control logistic regression[J]. Transportation Research Record, 2004, 1897: 88.
  • 5Abdel-Aty M, Uddin N, Pande A. Split models for predicting multivehicle crashes during high-speed and low-speed operating conditions on freeways[J]. Transportation Research Record, 2005,1908: 51.
  • 6Abdel-Aty M, Pande A. Identifying crash propensity using specific traffic speed conditions [J ]- Journal of Safety Research, 2005, 36(1): 97.
  • 7Abdel-Aty M, Pande A. Classification of real-time traffic speed patterns to predict crashes on freeways[C/CD]//83rd ,knnual Meeting of the Transportation Research Board. Washington D C.. Transportation Research Board, 2004.
  • 8Abdel-Aty M, Abdalla F M. Linking roadway geometrics and real-time traffic characteristics to model daytime freeway crashes: generalized estimating equations for correlated data [J]- Transportation Research Record, 2004,1897 : 106.
  • 9Pande A, Abdel-Aty M. Assessment of freeway traffic parameters leading to lane-change related collisions [J] Accident Analysis & Prevention, 2006, 38(5) : 936.
  • 10Oh C, Oh J S, Ritchie S G, et al. Real-time estimation of freeway accident likelihood[C/CD]//80th Annual Meeting of the Transportation Research Board. Washington D C Transportation Research Board, 2001.

共引文献34

同被引文献65

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部