期刊文献+

一类华罗庚域与复欧氏空间的不相关性 被引量:1

Non-Relativity of a Class of Hua Domains and Complex Euclidean Spaces
原文传递
导出
摘要 华罗庚域是Cartan-Egg域的推广,其矩阵形式要复杂得多。本文主要考虑1 p1,...,1 pr-1都是正整数,而pr是正实数时的华罗庚域,证明了这类具有Bergman度量的华罗庚域与具有平坦度量的复欧氏空间是不相关的。 Hua domain is a generalization of Cartan-Egg domain. Its matrix form is much more complex. We mainly consider the Hua domain, in which 1 p_(1),...,1 p_(r-1) are the positive integers, pr is the positive real number. It is proved that Hua domain equipped with Bergman metrics is not related to complex Euclidean spaces equipped with canonical metrics.
作者 程晓亮 马会波 CHENG Xiaoliang;MA Huibo(College of Mathematics and Computer,Jilin Normal University,Siping 136000,Jilin,China)
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2023年第3期409-416,共8页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金(12026420)。
关键词 华罗庚域 全纯等距嵌入 Nash函数 BERGMAN度量 Hua domain holomorphic isometric embedding Nash function Bergman metric
作者简介 程晓亮,男,教授,现从事多复变与复几何方面的研究。E-mail:chengxiaoliang92@163.com。
  • 相关文献

参考文献6

二级参考文献29

  • 1郑学安,龚昇.Reinhardt域的Bergman核函数(Ⅱ)[J].中国科学(A辑),1995,25(7):683-692. 被引量:3
  • 2钟家庆 殷慰萍.非对称可递域的若干类型[J].数学学报,1981,24(4):587-613.
  • 3钟家庆 殷慰萍.非对称典型域的扩充空间[J].数学学报,1981,24(4):614-640.
  • 4殷慰萍.非对称第一类齐性Siegel域的酉几何(Ⅰ)[J].数学学报,1981,24(5):753-764.
  • 5陈启铿.典型流形与典型域新篇[M].上海:上海科学技术出版社,1997..
  • 6陈启铿.多复变数函数引论[M].北京:科学出版社,1961..
  • 7陆启铿.多复变函数引论[M].北京:科学出版社,1961..
  • 8许以超.ON THE BERGMAN KERNEL FUNCTION OF HOMOGENEOUS BOUNDED DOMAINS[J]Science in China,Ser.A,1979(S1).
  • 9John P. D’Angelo.An explicit computation of the Bergman kernel function[J]. The Journal of Geometric Analysis . 1994 (1)
  • 10B. S. Zinov’ev.On reproducing kernels for multicircular domains of holomorphy[J]. Siberian Mathematical Journal . 1974 (1)

共引文献29

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部