摘要
充分挖掘用户数据价值识别用户电能质量需求,推进差异化增值服务对提升用户满意度和电网公司竞争力具有重要价值。首先,基于多维用户数据,引入用户画像理论,建立了多维度优质电力用户画像标签体系,以识别用户电能质量需求;其次,利用K-means聚类算法进行优质电力用户群体画像,实现用户群体划分,基于前景理论量化用户电能质量需求,并以此为依据开展差异化增值服务套餐设计。最后,通过案例分析验证了其合理性和有效性。
Fully exploring the value of user data to identify user energy quality needs and promoting differentiated value-added services are of great value for improving user satisfaction and the competitiveness of power grid companies.Firstly,based on multidi-mensional user data,user profile theory to establish a multi-dimen-sional high-quality power user profile label system to identify users’power quality needs is introduced.Secondly,K-means clustering algorithm is used to profile high-quality power user groups,achieve user group division,quantify user power quality requirements based on prospect theory,and based on this differentiated value-added service package design is carried out.Finally,the effectiveness of the proposed method is verified through case analysis.
作者
张一帆
潘大志
杨洋
梁帅
郭杉
ZHANG Yifan;PAN Dazhi;YANG Yang;LIANG Shuai;GUO Shan(Inner Mongolia Power Research Institute Branch,Inner Mongolia Power(Group)Co.,Ltd.,Hohhot 010020,China;Inner Mongolia Enterprise Key Laboratory of Smart Grid Simulation of Electrical Power System,Hohhot 010020,China)
出处
《电力需求侧管理》
2023年第5期110-116,共7页
Power Demand Side Management
基金
内蒙古电力(集团)有限责任公司科技项目(21HO469)。
作者简介
张一帆(1984),女,内蒙古呼和浩特人,学士,高级工程师,主要从事电力系统与电能质量研究等工作。