期刊文献+

基于图像识别的无标尺水位测量技术研究 被引量:6

Research on measuring technique of water level without scale based on image recognition
在线阅读 下载PDF
导出
摘要 针对传统人工读取水位标尺效率低和现有基于水位标尺进行图像处理获取水位的环境适应性差、水位标尺量程短等问题,提出一种基于图像识别的无标尺水位测量技术。该技术无需借助水位标尺,仅需对水位进行标定;将采集到的水位图像输入U-net神经网络进行训练,得到水体区域和非水体区域的图像语义分割模型;借助图像识别获取水位线坐标;最后根据水位标定的数学模型,采用线性插值和坐标拟合的方法计算水位。试验结果表明,该技术环境适应性强,昼、夜间的水位测量误差均小于1 cm。采用该技术可以实现河道、水库等大量程的水位实时测量。 Aiming at the problems of low efficiency of traditional manual reading of water level gauge,poor environmental adaptability and short range of water level gauge obtained by image processing based on water level gauge,a ruler free water level measurement technology based on image recognition is proposed.This technology only needs to calibrate the water level without the help of water level gauge,and input the collected water level image into U-net neural network for training,The image semantic segmentation models of water area and non water area are obtained,and the water level coordinates are obtained by image recognition.Finally,according to the mathematical model of water level calibration,the water level value is calculated by linear interpolation and coordinate fitting.The test results show that the technology has strong environmental adaptability,and the water level measurement errors in day and night are less than 1 cm.This technology can realize the real-time measurement of water level in a large range of rivers and reservoirs.
作者 孙英豪 丁勇 李登华 谢东辉 SUN Yinghao;DING Yong;LI Denghua;XIE Donghui(School of Science,Nanjing University of Science and Technology,Nanjing 210094,China;Key Laboratory of Failure Mechanism and Prevention and Control Technology of Earth-Rock Dam,Ministry of Water Resources,Nanjing Hydraulic Research Institute,Nanjing 210029,China;Jiaokou Reservoir Branch,Ningbo Raw Water Group Co.,Ltd.,Ningbo 315000,China)
出处 《水利水运工程学报》 CSCD 北大核心 2023年第4期91-97,共7页 Hydro-Science and Engineering
基金 国家自然科学基金资助项目(51979174) 国家自然科学基金联合基金项目(U2040221) 浙江省水利厅科技计划项目(RB2035)。
关键词 水位测量 图像识别 神经网络 语义分割 water level measurement image recognition neural network semantic segmentation
作者简介 孙英豪(1995-),男,江苏常州人,硕士研究生,主要从事结构健康监测技术研究工作。E-mail:syh0818nust@163.com;通信作者:丁勇(E-mail:njustding@163.com)。
  • 相关文献

参考文献14

二级参考文献97

共引文献148

同被引文献82

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部