期刊文献+

基于约束的局部-全局LWF链图结构学习算法

Local-Global LWF Chain Graph Structure Learning Algorithm Based on Constraints
在线阅读 下载PDF
导出
摘要 LWF链图结构学习旨在发现链图中所有节点的父节点、子节点、邻居节点以及配偶节点.然而,目前最新的LWF链图结构学习算法是基于Growing-Shrinking(GS)思想得到节点的局部结构(即节点的马尔科夫毯)来学习全局网络结构,该类算法的条件独立测试是以整个马尔科夫毯为条件集的,为了保证条件独立测试的可靠性,算法要求样本数量是马尔科夫毯大小的指数级,从而使得算法的数据效率较差.针对该问题,本文提出了一种基于约束的局部-全局LWF链图结构学习算法.该算法通过迭代的学习邻接集和配偶集来降低对数据样本量的要求;与此同时,在学习邻接集时采用后向策略保障了条件独立测试的正确性.算法的基本思想如下:首先学习网络中每个节点的马尔科夫毯,将节点马尔科夫毯学习拆分为学习邻接集和学习配偶集;然后利用节点的马尔科夫毯信息恢复网络骨架,根据链图复合体有向边的特点,利用条件独立测试确定网络复合体有向边,从而恢复链图结构.理论分析证明了该算法的正确性,在仿真数据集和标准数据集上的实验测试验证了算法的有效性. LWF chain graph structure learning aims to find the parents,children,neighbours and spouses of all nodes in the chain graph.Currently,the state-of-the-art LWF chain graph structure learning algorithms obtain the local structure of nodes to learn the global network structure based on Growing-Shrinking(GS)idea.The conditional independence test of these algorithms takes the whole Markov blanket(MB)as the condition set.In order to ensure the reliability of conditional independence test,the number of samples is required to be exponential level of the size of Markov blanket,which makes the data efficiency of the algorithm poor.To alleviate this problem,we propose a Local-Global LWF chain graph structure learning algorithm based on constraints,which reduces the requirement of sample size of data by iterative learning adjacen⁃cies and spouses;while learning adjacencies,it further improves the accuracy of the conditional independence test by back⁃ward strategy.The basic idea of the algorithm as follows:firstly,the Markov blanket of each node in the network is learned,and the Markov blanket learning of node is divided into learning the adjacencies and the spouses;secondly,we use the Markov blanket information of nodes to recover the network skeleton and take advantage of conditional independent test to discover its complexes,which restores the chain graph structure,according to the characteristics of directed edges of chain graph complexes.Theoretical analysis demonstrates the correctness of the algorithm.Moreover,experiments on the generated datasets and standard datasets show the effectiveness of the algorithm.
作者 曹付元 杨淑晶 王雲霞 俞奎 CAO Fu-yuan;YANG Shu-jing;WANG Yun-xia;YU Kui(School of Computer and Information Technology,Shanxi University,Taiyuan,Shanxi 030006,China;School of Computer Science and Information Engineering,Hefei University of Technology,Hefei,Anhui 230601,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2023年第6期1458-1467,共10页 Acta Electronica Sinica
基金 国家自然科学基金(No.61976128)。
关键词 LWF链图 马尔科夫毯 条件独立测试 数据效率 LWF chain graph Markov blanket conditional independence test data efficiency
作者简介 曹付元,男,1974年5月出生于山西省阳高县.现为山西大学计算机与信息技术学院教授.主要研究方向为数据挖掘、机器学习与因果推断.在国内外发表学术论文70余篇.E⁃mail:cfy@sxu.edu.cn;杨淑晶,女,1996年1月出生于山西省临汾市.现为山西大学计算机与信息技术学院博士研究生.主要研究方向为数据挖掘、机器学习与因果推断.E⁃mail:ysjzuibang@126.com。
  • 相关文献

参考文献2

二级参考文献48

  • 1胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:346
  • 2Roller D, Friedman N. Probabilistic Graphical Models: Principles and Techniques. MIT Press, 2009.
  • 3Gibbs JW. Elementary principles in Statistical Mechanics: Developed with Especial Reference to the Rational Foundation of Thermodynamics. Yale University Press, 1902.
  • 4Wright S. Systems of mating. I. the biometric relations between parent and offspring. Genetics, 1921,6(2): 111-123.
  • 5Croft DJ, Machol RE. Mathematical methods in medical diagnosis. Annals of Biomedical Engineering, 1974,(2):69-89. [doi: 10. 1007/BF02368087].
  • 6Gorry GA, Barnett G. Experience with a model of sequential diagnosis. Computers and Biomedical Research, 1968,l(5):490-507. [doi: 10.1016/0010-4809(68)90016-5].
  • 7Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausble Inference. Morgan Kaufmann Publishers, 1988.
  • 8Lauritzen SL, Spiegelhalter DJ. Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society. Series B (Methodological), 1988,50(2):157-224.
  • 9Heckerman DE, Horvitz EJ, Nathwani BN. Toward Normative Expert Systems: The Pathfinder Project. Stanford: Knowledge Systems Laboratory, Stanford University, 1990.
  • 10Kschischang FR, Frey BJ, Loeliger HA. Factor graphs and the sum-product algorithm. IEEE Trans, on Information Theory, 2001, 47(2):498-519. [doi: 10.1109/18.910572].

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部