期刊文献+

推进剂当量比对RDC出口流动特性的影响

Effect of Propellant Equivalent Ratios on RDC Outlet Flow Characteristics
在线阅读 下载PDF
导出
摘要 为了研究不同当量比下燃烧室出口压力和温度等特性,利用多孔喷注的旋转爆震燃烧室模型,以乙炔为燃料,空气为氧化剂,对压力和温度分布均匀性、增压比以及喷射压力比等指标进行了分析。研究结果表明,保持质量流率不变,随着当量比的增大,燃烧室内燃烧工况从贫燃逐渐变为富燃,出口压力及温度的均匀性会先变好后变差,增压比先增大后减小。当量比为1时,燃烧室内为双波传播状态,出口压力和温度均匀性最好,此时CV值最小为0.57,1⁃CU值最小为0.52,畸变指数最小为2.936,OTDF值最小为0.36,增压比最大为1.13,但当量比对燃烧室增压比的提升效果有限。 In order to study the characteristics of the combustion chamber outlet pressure and temperature at different equivalence ratios,adopting the rotating detonation combustor(RDC)model with multi-hole injection,acetylene as the fuel and air as the oxidizer,pressure and temperature distribution uniformity,pressure ratio,injection pressure ratio and so on are analyzed.The results show that keeping the mass flow rate constant,with the increase of the equivalent ratio,the combustion conditions of RDC gradually change from lean fuel to rich fuel,the uniformity of outlet pressure and temperature will first become better and then worse,and the pressure ratio first increases and then decreases.When the equivalent ratio value is 1,the combustion chamber is a double-wave propagation mode.And uniformity of the outlet pressure and temperature is the best,the minimum CV and 1-CU value is 0.57 and 0.52,the minimum distortion coefficient and OTDF value is 2.936 and 0.36,and the maximum pressure ratio value is 1.13.However,the equivalent ratio has a limited effect on the pressure ratio enhancement.
作者 闫畅 韩启祥 YAN Chang;HAN Qixiang(College of Energy and Power Engineering,Nanjing University of Aeronautics&Astronautics,Nanjing 210016,China)
出处 《南京航空航天大学学报》 CAS CSCD 北大核心 2023年第4期614-621,共8页 Journal of Nanjing University of Aeronautics & Astronautics
关键词 旋转爆震燃烧室 传播模态 出口均匀性 增压特性 rotating detonation combustor(RDC) propagation mode outlet uniformity pressure-gain performance
作者简介 通信作者:韩启祥,男,教授,博士生导师,E-mail:hqx205@nuaa.edu.cn。
  • 相关文献

参考文献4

二级参考文献75

  • 1邵业涛,王健平.连续爆轰发动机的二维数值模拟研究[J].航空动力学报,2009,24(5):980-986. 被引量:12
  • 2邵业涛,刘勐,王健平.圆柱坐标系下连续旋转爆轰发动机的数值模拟[J].推进技术,2009,30(6):717-721. 被引量:18
  • 3NICHOLI.S J A,CULLEN R E,RAGLAND K W. Feasibility studies of a rotating detonation wave rocket motor [J]. Spaeecra, 1966,3(6): 893-898.
  • 4BYKOVSKII F A,VEDERNIKOV E F. Continuous detonation of a subsonic flow of a propellant[J]. Combustion, Explosion, and ShockWaves,2003,39(3):323-334.
  • 5TAKI S,FUJIWARA T. Numerical analysis of two-dimensional non steady detonations[J]. AIAA, 1978,16(1) :73- 77.
  • 6MANABU H, FUJIWARA T, PIOTR W. Fundamentals of rotating detonations[J]. Shock Waves, 2009,19( 1 ) : 1 - 10.
  • 7SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock capturing schemes Ⅱ[J]. Jounal of Com- putational Physics, 1989,83 : 32- 78.
  • 8I3OU M S, STEFFEN C J, Jr. A new flux splitting scheme[J]. Journal of Computational Physics, 1993,107 (1) : 23- 39.
  • 9SHIMIZU H,TSUBOI N, HAYASHI A K. Study of detailed chemical reaction modelon hydrogen-air detonation, A1AA 2001-0478[R]. 2001.
  • 10TAKAYUKI Y, KOICHI H. Numerical analysis of threshold of limit detonation in rotating detonation engine, AIAA 2010- 153[R]. 2010.

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部