期刊文献+

叶型接受孔耦合叶轮结构优化对涡轮预旋供气系统性能改进研究 被引量:1

Structural Optimization of Blade-shaped Receiver Hole Coupled With Impeller on Turbine Pre-swirl System for Performance Improvement
在线阅读 下载PDF
导出
摘要 预旋供气系统为燃气涡轮转子叶片提供高品质冷气。为改进预旋供气系统温降性能,基于预旋供气系统数学模型的理论推导,揭示出原模型温降性能不显著的影响机制和解决方法,提出一种动叶前缘式进口的叶型接受孔的优化模型,并评估优化前后预旋供气系统的热力学和气动特性。结果表明,预旋腔内转静部件匹配问题是影响系统性能的一个重要限制因素,动叶前缘式接受孔能够解决转静难以匹配的问题。在满足供气流量和供气压力的条件下,采用动叶前缘式接受孔的优化模型预旋腔压力由原模型的640.2kPa降至533.0kPa,降低了16.7%。系统温变由温升转为温降,温降效率由-30%增加至55%,温降变化范围达13.56K。比功耗由6720 J/kg降至3979J/kg,下降了40.8%。 A pre-swirl system can provide high-quality cooling air for gas turbine blades.In order to improve the temperature drop performance of the pre-swirl system,the influence mechanism and solution scheme are proposed to reveal the insignificant temperature drop of the original model by theoretical derivations.A blade-shaped leading-edge receiver hole is designed to enhance the system performance.Furthermore,the thermodynamic and aerodynamic characteristics are compared for the systems using the blade-shaped receiver hole and the original receiver hole,respectively.The results show that the matching of rotor and stator parts in the pre-swirl cavity is an important factor influencing the system performance.The blade-shaped receiver hole can better solve the matching problem.Compared with the system using the original receiver hole,the pre-swirl cavity pressure of the system with blade-shaped receiver hole is reduced from 640.2 kPa to 533.0 kPa under the condition of the specific mass flow rate and pressure of the supplied air,which is decreased by 16.7%.The system using the blade-shaped receiver hole has the positive system temperature drop,the temperature drop efficiency increases from-30%to 55%,and the range of temperature drop is 13.56 K.The specific power consumption decreases by 40.8%from 6720 J/kg to 3979 J/kg.
作者 白杨 赵义祯 张林 薛永建 林阿强 刘高文 BAI Yang;ZHAO Yizhen;ZHANG Lin;XUE Yongjian;LIN Aqiang;LIU Gaowen(School of Power and Energy,Northwestern Polytechnical University,Xi’an 710129,Shaanxi Province,China;Shenyang Engine Research Institute,Aero Engine Corporation of China,Shenyang 110015,Liaoning Province,China)
出处 《中国电机工程学报》 EI CSCD 北大核心 2023年第15期5943-5954,共12页 Proceedings of the CSEE
基金 国家科技重大专项(2017-Ⅲ-0011-0037) 中央高校基本科研业务费专项资金项目(3102021OQD701)。
关键词 涡轮空气系统 预旋供气系统 温降 比功耗 旋转比 叶型接受孔 turbine air system pre-swirl system temperature drop specific power consumption swirl ratio blade-shaped receiver hole
作者简介 白杨(1998),男,硕士研究生,主要研究方向为燃气涡轮发动机预旋供气系统的流动温变特性研究,baiyang7@mail.nwpu.edu.cn;通信作者:刘高文(1976),男,博士,教授,博士生导师,主要从事燃气涡轮发动机旋转盘腔流动传热研究和热部件先进冷却技术研究,gwliu@nwpu.edu.cn。
  • 相关文献

参考文献12

二级参考文献76

  • 1冶萍,张靖周.有预旋进气转静盘腔中的流动和换热特性数值研究[J].航空动力学报,2004,19(3):370-374. 被引量:16
  • 2冯青,周彬,刘松龄.转盘-静盘腔内层流流动的相似分析及其N-S方程数值解[J].航空动力学报,1994,9(4):366-370. 被引量:5
  • 3J Michael Owen.Modelling internal air systems ingas turbine engines[J].航空动力学报,2007,22(4):505-520. 被引量:11
  • 4Smout P D,Chew J W,Childs P R N,et al. ICA-GT:a european collaborative research programme on internal cooling air systems for gas turbines[R]. ASME Paper GT- 2002-30479,2002.
  • 5Karabay H,Chen J X,Pilbrow R,et al. Flow in a "coverplate" preswirl rotor-stator system[J]. Journal of Turbomachinery, 1999,121(1) : 160 -166.
  • 6Karabay H, Pilbrow R, Wilson M, et al. Performance of preswirl rotating disc systems [J]. ASME Journal of Gas Turbines and Power, 2000,122 (3) : 442-450.
  • 7Karabay H, Owen J M, Wilson M. Approximate solutions for flow and heat transfer in preswirl rotating disc systems[R]. ASME Paper 2001-GT-0200,2001.
  • 8Popp O, Zimmermann H, Kutz J. CFD analysis of coverplate receiver flow[J ]. Journal of Turbomachinery, 1998, 120(1) :43-49.
  • 9Jarzombek K, Dohmen H J,Benra F K. Flow analysis in gas turbine pre-swirl cooling air systems-variation of geometric parameters [R]. ASME Paper GT-2006 -90445, 2006.
  • 10Young C, Snowsill G D. CFD optimisation of cooling air offtake passages within rotor cavities[R]. ASME Paper GT-2002-30480 , 2002.

共引文献69

同被引文献13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部