期刊文献+

机械设备轴承故障自动化诊断技术 被引量:2

Automatic Diagnosis Technology for Mechanical Equipment Bearing Faults
在线阅读 下载PDF
导出
摘要 常规的机械设备轴承故障自动化诊断技术主要使用权重共享函数提取轴承故障特征,易受特征提取层的组成影响,导致诊断效果较差。设计一种全新的机械设备轴承故障自动化诊断技术,结合轴承故障信号阈值进行故障信号降噪处理,利用小波熵设计轴承故障自动化诊断算法,完成机械设备轴承故障自动化诊断。实验结果表明,设计的机械设备轴承故障自动化诊断技术提取的故障特征频率与实际故障特征频率较拟合,诊断效果较好。 The conventional automatic diagnosis technology for bearing faults of mechanical equipment mainly uses the weight sharing functions to extract the bearing fault features,which are easily affected by the composition of the feature extraction layer,resulting in poor diagnostic performance.A new automatic fault diagnosis technology for bearing of mechanical equipment is designed,with the fault signal de-noised according to the bearing fault signal threshold,which uses wavelet entropy to design an automated diagnosis algorithm for bearing faults and complete automated diagnosis of mechanical equipment bearing faults.The experimental results show that the designed automatic diagnosis technology for bearing faults of mechanical equipment extracts fault feature frequencies which match the actual fault feature frequencies and is with good diagnostic effect.
作者 王均佩 Wang Junpei
出处 《电动工具》 2023年第4期19-22,共4页 Electric Tool
关键词 机械设备 轴承 故障诊断 降噪 算法 自动化 mechanical equipment bearing fault diagnosis de-noise algorithm automation
作者简介 王均佩(1971-),男,大学,研究方向:机械电气。
  • 相关文献

参考文献8

二级参考文献64

共引文献56

同被引文献11

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部