期刊文献+

基于极限学习机的智能电网运行入侵检测研究 被引量:5

Research on intrusion detection of smart grid operation basedon extreme learning machine
在线阅读 下载PDF
导出
摘要 为解决智能电网运行入侵检测效率慢及入侵检测精度较低等问题,提出基于量子甲虫群算法优化的极限学习机模型。通过构建量子甲虫群优化算法,并引入量子力学,结合甲虫触角搜索和粒子群优化的优点,以进一步提高极限学习机算法入侵收敛性能,降低极限学习机的计算复杂度和训练时间。结果表明:随着迭代次数的增加,入侵检测测试误差逐渐减小,最小误差率为1.1%。所提出的极限学习机算法的准确率、平均F值和攻击准确率分别为95.82%、95.90%和95.16%。与随机森林算法相比,极限学习机可以有效提高智能电网运行入侵检测的准确性、检测率、攻击准确率,降低误报率,算法可满足实际智能电网运行入侵检测。 To further solve the problems of slow intrusion detection efficiency and low intrusion detection accuracy in smart grid operation,an extreme learning machine model based on quantum beetle swarm optimization algorithm is proposed.By constructing a quantum beetle swarm optimization algorithm and introducing quantum mechanics,combining the advantages of beetle antenna search and particle swarm optimization,the intrusion convergence performance of extreme learning machine algorithm is further improved,and the computational complexity and training time of extreme learning machine are reduced.The experimental results show that as the number of iterations increases,the error of intrusion detection testing gradually decreases,with a minimum error rate of 1.1%.The accuracy,average F value and attack accuracy of the proposed extreme learning machine algorithm are 95.82%,95.90%and 95.16%respectively.Compared with random forest algorithm,extreme learning machine can effectively improve the accuracy,detection rate and attack accuracy of intrusion detection in smart grid operation,and reduce false alarm rate,and extreme learning machine algorithm can meet the actual intrusion detection in smart grid operation.
作者 梁林森 LIANG Linsen(Information Centre,Guangzhou Power Supply Bureau,Guangdong Power Grid Co.,Ltd.,Guangzhou 510000,China)
出处 《粘接》 CAS 2023年第8期185-188,共4页 Adhesion
关键词 极限学习机 智能电网 入侵 检测研究 extreme learning machine smart grid invasion detection research
作者简介 梁林森(1982-),男,硕士,高级工程师,研究方向:信息技术等,E-mail:llintao3482@126.com。
  • 相关文献

参考文献19

二级参考文献214

共引文献381

同被引文献67

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部