期刊文献+

深度强化学习在微电网系统调控中的应用综述 被引量:13

Review on Applications of Deep Reinforcement Learning in Regulation of Microgrid Systems
在线阅读 下载PDF
导出
摘要 随着微电网系统的复杂性、随机性和数据维度不断增加,传统的模型驱动方法可能存在建模难度高、计算效率低、易受不确定因素干扰等缺点,因此难以对微电网进行精准高效的优化调控。近年来,深度强化学习迅猛发展,作为一种数据驱动的方法,因其结合了深度学习和强化学习的优势,可以在大规模场景和有限信息下,学习大量高维的和具有不确定性的数据来解决决策问题,克服传统模型驱动方法中存在的问题,实现对微电网的实时控制和反馈。该文首先对深度强化学习的基本思想、算法和优势进行了概述,然后从多组件协调运行、能源管理、能量交易、故障检测与恢复、发电功率预测和系统控制保护6个方面回顾总结了将深度强化学习应用于微电网系统调控中的现有研究成果,并与传统的求解方法进行了对比,分析总结了深度强化学习在微电网优化调控中的优势。最后,从提升硬件设施、更新优化算法、解决隐私问题、提高迁移能力4个方面提出展望。 With the increasing complexity,randomness and data dimensions of microgrid systems,the traditional model-driven methods have shown disadvantages such as high modeling difficulty,low computational efficiency and big vulnerability to interferences of the uncertain factors,so it is difficult to optimize and regulate the microgrids accurately and efficiently.In recent years,the deep reinforcement learning has developed rapidly.As a data-driven method,it combines the advantages of deep learning and reinforcement learning.It can solve the decision-making problems by learning a large amount of high-dimensional and uncertain data.Besides,it can overcome the problems that exist in the traditional model-driven methods,and realize real-time control and feedback of microgrids.This paper first gives an overview of the basic ideas,the algorithms and the advantages of deep reinforcement learning.Then,it reviews and summarizes the existing research results of applying deep reinforcement learning to the microgrids in six aspects:the coordinated operation of multiple components,the energy management,the energy trading,the fault detection and recovery,the power generation forecast and the system control protection.It also compares with the traditional solution methods,and draws a conclusion of the superiorities of deep reinforcement learning in the optimization and regulation of microgrids.Finally,this paper prospects deep reinforcement learning from four aspects:the hardware facility construction,the algorithm update and optimization,the privacy improvement,and the migration capability.
作者 张有兵 林一航 黄冠弘 杨晓东 翁国庆 周致言 ZHANG Youbing;LIN Yihang;HUANG Guanhong;YANG Xiaodong;WENG Guoqing;ZHOU Zhiyan(College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,Zhejiang Province,China)
出处 《电网技术》 EI CSCD 北大核心 2023年第7期2774-2787,共14页 Power System Technology
基金 国家自然科学基金项目(52007074)。
关键词 深度强化学习 人工智能 微电网 优化调控 deep reinforcement learning artificial intelligence microgrid optimal regulation
作者简介 张有兵(1971),男,教授,博士生导师,主要研究方向:智能电网、分布式发电及新能源优化控制、电动汽车入网、电力系统通信、电能质量监控等,E-mail:youbingzhang@zjut.edu.cn;通信作者:杨晓东(1990),男,博士,主要研究方向为需求响应与微电网协同增效、分布式能源交易、主动配电系统的优化运行与故障恢复,E-mail:yang_xd90@163.com。
  • 相关文献

参考文献31

二级参考文献478

共引文献1015

同被引文献196

引证文献13

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部