期刊文献+

On the material dependency of peri-implant morphology and stability in healing bone 被引量:1

原文传递
导出
摘要 The microstructural architecture of remodeled bone in the peri-implant region of screw implants plays a vital role in the distribution of strain energy and implant stability.We present a study in which screw implants made from titanium,polyetheretherketone and biodegradable magnesium-gadolinium alloys were implanted into rat tibia and subjected to a push-out test four,eight and twelve weeks after implantation.Screws were 4 mm in length and with an M2 thread.The loading experiment was accompanied by simultaneous three-dimensional imaging using synchrotron-radiation microcomputed tomography at 5μm resolution.Bone deformation and strains were tracked by applying optical flow-based digital volume correlation to the recorded image sequences.Implant stabilities measured for screws of biodegradable alloys were comparable to pins whereas non-degradable biomaterials experienced additional mechanical stabilization.Peri-implant bone morphology and strain transfer from the loaded implant site depended heavily on the biomaterial utilized.Titanium implants stimulated rapid callus formation displaying a consistent monomodal strain profile whereas the bone volume fraction in the vicinity of magnesium-gadolinium alloys exhibited a minimum close to the interface of the implant and less ordered strain transfer.Correlations in our data suggest that implant stability benefits from disparate bone morphological properties depending on the biomaterial utilized.This leaves the choice of biomaterial as situational depending on local tissue properties.
出处 《Bioactive Materials》 SCIE CSCD 2023年第10期155-166,共12页 生物活性材料(英文)
作者简介 Corresponding author:Stefan Bruns.E-mail addresses:stefan.bruns@hereon.de;Corresponding author:Berit Zeller-Plumhoff.E-mail addresses:berit.zeller-plumhoff@hereon.de。
  • 相关文献

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部