期刊文献+

缺陷板材二维排样的一种随机密钥遗传算法

A Random Key Genetic Algorithm for Two-Dimensional Layout of Defective Plate
在线阅读 下载PDF
导出
摘要 讨论缺陷板材二维排样问题,即用一张带缺陷区域的板材切割出若干种矩形件,对每种矩形件允许从板材上切割的数量不做限制,优化目标为板材切割出的矩形件的总价值最大.将放置规则和随机密钥遗传算法相结合求解排样方式,用放置规则确定当前待排样矩形件在板材上的放置位置,用随机密钥遗传算法确定矩形件的排样序列和排样参数,用极大空闲空间技术处理板材的空闲空间和缺陷区域.为了提高遗传算法对解空间的搜索范围,放置规则采用最下最左和最左最下两种不同的启发式.通过数值实验比较所提方法与文献方法,实验结果表明,所提方法计算时间较少、排样价值较高. In this paper we discusse the problem of two-dimensional layout of defective plate,that is,cutting several kinds of rectangular parts with a plate with defective area.There is no limit on the number of rectangular parts allowed to be cut from the plate,and the optimization goal is to maximize the total value of rectangular parts cut from the plate.The placement rule and random key genetic algorithm are combined to solve the layout.The placement rule is used to determine the placement position of the rectangular parts to be arranged on the plate,and the random key genetic algorithm is used to determine the layout sequence and layout parameters of the rectangular parts.The free space and defect area of the plate are treated with maximum free space technology.In order to improve the search range of genetic algorithm for solution space,two different heuristics are adopted in the placement rules:the bottom-left and the left-bottom.With the benchmark examples in the literature,the method in this paper is compared with the method in the literature through numerical experiments.The experimental results show that this method has less calculation time and higher layout value.
作者 湛维明 王佳 Zhan Weiming;Wang Jia(Intelligence Finance Research and Development Center in Hebei Province,Baoding 071051,China;School of Computer and Information Engineering,Hebei Finance University,Baoding 071051,China)
出处 《南京师范大学学报(工程技术版)》 CAS 2023年第2期25-31,共7页 Journal of Nanjing Normal University(Engineering and Technology Edition)
基金 河北省科技计划软科学研究项目(21557690D).
关键词 排样问题 随机密钥遗传算法 矩形件 缺陷板材 layout problem random key genetic algorithm rectangular parts defective plate
作者简介 通讯作者:湛维明,博士,讲师,研究方向:算法优化、信息安全、数据分析.E-mail:zwmhb01@163.com。
  • 相关文献

参考文献6

二级参考文献38

  • 1刘胡瑶,何援军.基于轨迹计算的临界多边形求解算法[J].计算机辅助设计与图形学学报,2006,18(8):1123-1129. 被引量:13
  • 2杨玉丽,孙英,崔耀东,陈弦,宋佩华.矩形毛坯三块排样方式及其算法[J].现代制造工程,2006(10):67-69. 被引量:5
  • 3Shpitalni M, Manevich V. Optimal orthogonal subdivision of rectangular sheets[J ]. Transactions of ASME Journal of Manufacturing Science and Enp;ineering, 1996, 118 ( 3 ) : 281 - 288.
  • 4Liu D S, Tan K C, Huang S Y, et al. On solving multiobjective bin packing problems using evolutionary particle swarm optimization [ J ]. European Journal qf Operational Research, 2008,190 (2) : 357 - 382.
  • 5Wang C X, Cao Y D, Zha J Z. Neural algorithms of two dimensional packing [ C ] // Proceeding of the 3rd World Congress on Intelligent Control and Automation. Hefei, 2000:1127- 1131.
  • 6Ramesh A B, Ramesh N B. Effective nesting of rectangular parts in multiple rectangular sheets using genetic and heuristic algorithms [ J]. International Journal of Production Research, 1999,37(7):1625- 1643.
  • 7Andreas B. A genetic algorithm for the two dimensional strip packing problem with rectangular pieces [ J ]. European Journal of Operational Research , 2006,172(3) :814- 837.
  • 8Chan F T S, Au K C, Chan L Y, et al. Using genetic algorithms to solve quality-related bin packing problem [ J ]. Robotics and Compz ter Integrated Manufacturing, 2007, 23(1):71 -81.
  • 9Alev S, Zafer B. Hybrid genetic algorithm and simulated annealing algorithm for two dimensional non-guillotine rectangular packing problems[J ]. Engineering Applications of Artificial Intelligence, 2006,19(5) :557 - 567.
  • 10Ren S, Wang 3, Zhang X J. Research on cha s partheno- genetic algorithm for TSP [ C ] // 2010 International Conference on Computer Applicatior and System Modeling. Taiyuan, 2010 : 290 - 293.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部