期刊文献+

深度学习机器人抓取系统 被引量:4

Design of robot grasping system based on deep learning
在线阅读 下载PDF
导出
摘要 针对传统人工示教机器人抓取系统智能化程度低、自适应性差、系统可移植性差等问题,提出一种基于深度学习的机器人抓取系统。搭建由UR3机械臂,Gigabyte Z370N WIFI嵌入式开发板,深度相机等组成的硬件系统,通过基于深度学习的目标检测获取目标物像素坐标,进行视觉系统的定位研究将像素坐标映射到世界坐标系并在ROS系统中进行机械臂建模与控制,完成对目标物的抓取。针对由于嵌入式硬件平台算力欠缺导致目标检测算法难以部署的问题,从目标检测精度、实时性两方面将工业界应用广泛的YOLO系列算法进行对比研究,探究基于深度学习的目标检测算法在算力欠缺的嵌入式机器人抓取系统中的应用。实验结果表明,基于计算机视觉的机器人抓取系统目标识别精度高,智能化程度和鲁棒性高,具有良好的可移植性,有一定的推广应用价值。 Aiming at the problems of low intelligence,poor adaptability and poor portability of traditional manual teaching robot grasping system,a robot grasping system based on deep learning is proposed.A hardware system consisting of UR3 manipulator,Gigabyte Z370N WIFI embedded development board and depth camera is built.The pixel coordinates of the target are obtained through the object detection based on deep learning.The pixel coordinates are mapped to the world coordinate system through the positioning research of the visual system,and the manipulator modeling and control are carried out in the ROS system to complete the capture of the target.Aiming at the problem that the target detection algorithm is difficult to deploy due to the lack of computing power in the embedded hardware platform,the YOLO series algorithms widely used in the industry are compared and studied from the aspects of target detection accuracy and realtime performance,and the application of the target detection algorithm based on deep learning in the embedded robot grasping system with insufficient computing power is explored.The experimental results show that the robot grasping system based on computer vision has high target recognition accuracy,high intelligence and robustness,good portability,and great application value.
作者 李世杰 左治江 李涵 LI Shijie;ZUO Zhijiang;LI Han(State Key Laboratory of Percision Blasting,Jianghan University,Wuhan 430056,China;Hubei Key Laboratory of Blasting Engineering,Wuhan 430056,China)
出处 《中国测试》 CAS 北大核心 2023年第5期129-136,共8页 China Measurement & Test
基金 国家重点研发计划资助项目(2021YFB2301004) 爆破工程湖北省重点实验室2021年度开放基金(BL2021-16)。
关键词 机器人抓取系统 计算机视觉 深度学习 目标检测 robot grasping system computer vision deep learning object detection
作者简介 李世杰(1997-),男,江苏连云港市人,硕士研究生,专业方向:计算机视觉,机器人抓取;通信作者:李涵(1991-),女,湖北荆州市人,讲师,硕士生导师,研究方向:计算机视觉,机器人抓取。
  • 相关文献

参考文献11

二级参考文献51

共引文献300

同被引文献33

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部