期刊文献+

基于多点变形监测数据的土石坝边坡失稳预测模型

Prediction Model of Slope Failure of Embankment Based on Multi-point Monitoring Data of Deformation
在线阅读 下载PDF
导出
摘要 为了合理利用土石坝边坡的监测数据,提出基于支持向量机的土石坝边坡失稳预测模型。在考虑土石坝坝体和坝基参数变异性的条件下,利用蒙特卡洛方法获得土石坝边坡的位移监测数据库,采用支持向量机方法和边坡监测点位移构建土石坝边坡失稳预测模型,通过实际案例验证了方法的有效性。计算结果表明,该方法可以有效利用多点变形监测数据建立土石坝边坡失稳预测模型,准确率令人满意;另外,监测点的数量与位置也与模型预测准确率相关,该文提出的最优监测点设计方法可为实际工程监测提供更为高效且经济的布置方案。 In order to make reasonable use of the monitoring data of embankment slope,this paper proposes a prediction model of slope failure of embankment based on the support vector machine method.Firstly,based on the Monte Carlo method,a database of displacement monitoring of embankment slope is obtained considering the variabilities of soil parameters of embankment.Then,the support vector machine combines with the monitoring database are adopted to construct the prediction model of slope failure of embankment.An actual embankment is taken as an example to verify the effectiveness of proposed method.The results show that the proposed method can effectively integrate the multi-point monitoring data of deformation to establish the high efficiency prediction model of slope failure of embankment.In addition,the number and location of monitoring points are also related to the accuracy of model predictions,the proposed method can provide a more efficient and economical optimal monitoring point design method in practice.
作者 沈金明 SHEN Jinming(China Jiangxi International Economic and Technical Cooperation Co.,Ltd.,Nanchang 330000,China)
出处 《广东水利水电》 2023年第5期21-25,共5页 Guangdong Water Resources and Hydropower
关键词 土石坝边坡 现场监测 支持向量机 预测模型 embankment slope field monitoring support vector machine prediction model
作者简介 沈金明(1995-),男,本科,助理工程师,主要从事水利工作。
  • 相关文献

参考文献9

二级参考文献60

共引文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部