期刊文献+

基于盲源分离的有机物混合信号特征提取与解析 被引量:4

Feature Extraction and Analysis of Organic Mixture Signal Based on Blind Source Separation
在线阅读 下载PDF
导出
摘要 展开基于独立成分分析(ICA)对复杂有机物混合体系盲源解析的系统研究。通过确立合理的独立成分数目的方法,分别利用模型分离信号的重构信号与原始信号之间的均方根误差、主成分的方差贡献率对独立成分数目的选择进行优化。综合3种ICA算法完成了以下研究:(1)含硝基苯等多种环境有机污染物混合质谱信号的源解析,其中Kernel-ICA提取的独立成分与实际的源信号之间具有较高的相关性,R平均值(标准差)为0.8697(0.10),可以满足定性识别的要求;(2)复方氨酚烷胺药物的紫外光谱信号中特征组分信息的提取,Kernel-ICA对药物主要成分对乙酰氨基酚提取的有效度最大。该研究工作为构建有机物体系最优盲源解析模型提供了理论支持,为实际环境样本中有机污染物的源解析、药物有效成分的提取提供了有效的手段。 A systematic study on blind source analysis of complex organic mixture system based on independent component analysis(ICA)was carried out.By establishing a reasonable number of independent components,the selection of the number of independent components was optimized by the root mean square error between the reconstructed signal of the separation signal and the original signal,and variance contribution rate of principal components.Synthesize algorithms including kernel ICA etc.,it was successfully achieved:(1)Source analysis of mixed mass spectral signals of various environmental organic pollutants containing nitrobenzene etc.;(2)Extraction of characteristic component information from ultraviolet spectral signals of Compound Paracetamol and Amantadine Hydrochloride.It provides theoretical support for constructing the optimal blind source analysis model of organic compound system,and provides an effective tool for source analysis of organic pollutants in actual environmental samples and extraction of active ingredients of medicine.The following studies have been completed by integrating three ICA algorithms:(1)The source analysis of the mixed mass spectrum signals of various environmental organic pollutants including nitrobenzene,among which the independent components extracted by Kernel ICA have a high correlation with the actual source signals,and the average value(standard deviation)of the substance R is 0.8697(0.10),which can meet the requirements of qualitative identification;(2)The extraction of characteristic component information in the ultraviolet spectrum signal of Compound Paracetamol and Amantadine Hydrochloride,Kernel ICA is the most effective algorithm for extracting the main components of drugs.The aboved research work provides theoretical support for the construction of the optimal blind source analysis model of organic matter system,and provides an effective means for the source analysis of organic pollutants in actual environmental samples and the extraction of effective components of drugs.
作者 黄秀 康嘉诚 王淇 李艳坤 HUANG Xiu;KANG Jia-cheng;WANG Qi;LI Yan-kun(Department of Environmental Science and Engineering,North China Electric Power University,Baoding,Hebei 071003,China;Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control,Baoding,Hebei 071003,China;Department of Information Systems,College of Business,City University of Hong Kong,Hong Kong 999077,China)
出处 《计量学报》 CSCD 北大核心 2023年第4期645-652,共8页 Acta Metrologica Sinica
基金 中央高校基本科研业务费(2017MS135) 国创计划资助项目(X2021-284)。
关键词 计量学 独立成分分析 有机污染物 独立成分数目 盲源信号分离 信息提取 metrology independent component analysis organic pollutants number of independent components blind source signal separation information extraction
作者简介 第一作者:黄秀(1995-),女,河北保定人,华北电力大学硕士研究生,主要研究方向为盲源信号分离与信息提取。Email:784741335@qq.com;通讯作者:李艳坤(1977-),女,河北邯郸人,华北电力大学副教授,主要从事化学计量学、环境分析化学方面的研究。Email:liyankun_ncepu@foxmail.com。
  • 相关文献

参考文献8

二级参考文献63

  • 1贾朝文,张学帅.基于数字波束合成的空间信号分离研究[J].中国电子科学研究院学报,2006,1(1):86-88. 被引量:5
  • 2蔡权伟,魏平,肖先赐.单信道多信号分量分离[J].通信学报,2006,27(6):49-56. 被引量:11
  • 3李秋娜,袁嗣杰,刘东华.基于EMD的混合信号盲分离方法[J].系统仿真学报,2007,19(6):1358-1361. 被引量:4
  • 4NANDI A K, AZZOUZ E E. Algorithms for automatic modulation recognition of communication signals [ J ]. IEEE Transactions on Communications, 1998, 46(4): 431-436.
  • 5AZZOUZ E E, NANDI A K. Procedure for automatic modulation recognition of analogue and digital modulations [ J ]. IEE Proceedings Communications, 1996, 143 (5 : 241- 273.
  • 6PARK C S, CHOI J H, NAH S P, et al. Automatic modulation recognition of digital signals using wavelet features and SVM [C]//10th International Conference on Advanced Communication Technology. Gangwon-do, Korea, 2008, 1: 387-390.
  • 7WU Juanping, HAN Yingzheng, ZHANG Jinmei, et al. Automatic modulation recognition of digital communication signals using statistical parameters methods [ C ]//Proceedings of 2007 IEEE International Conference on Communications, Circuits and Systems. Kokura, Japan, 2007: 697-700.
  • 8CHEN Xiaolong, WANG Jiali, XIN Li. A new automatic modulation recognition method in test and measurement technology[ C ]//8th International Conference on Electronic Measurement and Instruments. Xi' an, China, 2007 : 622- 625.
  • 9REN Xiaotian, XU Hui. Fast-ICA based blind estimation of the spreading sequences for down-link multi-rate DS/ CDMA signals[J]. Intelligent Computation Technology and Automation, 2012, 5( 1): 501-504.
  • 10Schlgl A, Lee F, Bischof H, et al. Characterization of four-class motor imagery EEG data for the BCI-competition 2005[J]. Journal of neural engineering, 2005, 2(4): L14-22.

共引文献67

同被引文献37

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部