期刊文献+

基于生物脑网络连接特性的高效神经网络算法

Efficient Neural Networks Algorithm Based on Connectivity Properties of Biological Brain Networks
在线阅读 下载PDF
导出
摘要 人工神经网络发展至今,已经在计算机视觉、类脑智能等方面得到广泛应用.在过去几十年中,人们对神经网络的研究注重追求更高的准确率,从而忽略了对网络计算成本的控制.而人脑作为高效且节能的网络,其对人工智能的发展起到了重要启示作用.如何仿真生物脑网络的连接特性,建立超低能耗的人工神经网络模型实现基本相同的目标识别正确率成为当前研究的热点.为建立低能耗的人工神经网络模型,本文结合大脑网络的连接特性,通过改变人工神经网络的连接实现网络的高效性.实验结果表明,结合生物脑网络的连接特性,改变网络的连接,很大程度上减少了网络的计算成本,而网络的性能并没有受到明显影响. Artificial neural networks have been developed and widely applied in computer vision and brain-like intelligence.In the past decades,research on neural networks focuses on higher accuracy rates but neglects the control of network computational costs.The human brain,as an efficient and energy-saving network,plays an important role in the development of artificial intelligence.How to emulate the connectivity properties of biological brain networks and build an ultra-low energy artificial neural network model for achieving essentially the same correct target recognition rate has become a hot research topic.To build an ultra-low artificial neural network model,this study realizes network efficiency by combining the connection properties of brain networks to change the connections of artificial neural networks.The experimental results show that combining the connectivity properties of biological brain networks to change the connections of the networks largely reduces the computational cost of the network,while the performance of the network is not significantly affected.
作者 庞艺伟 于玉国 PANG Yi-Wei;YU Yu-Guo(Software School,Fudan University,Shanghai 200433,China;Research Institute of Intelligent Complex Systems,Fudan University,Shanghai 200433,China)
出处 《计算机系统应用》 2023年第5期196-203,共8页 Computer Systems & Applications
基金 科技部项目(2021ZD0201301)。
关键词 高效网络 复杂网络 连接异质性 efficient networks complex networks connection heterogeneity
作者简介 通信作者:于玉国,E-mail:yuyuguo@fudan.edu.cn。
  • 相关文献

参考文献3

二级参考文献14

  • 1武妍,王守觉.一种通过反馈提高神经网络学习性能的新算法[J].计算机研究与发展,2004,41(9):1488-1492. 被引量:16
  • 2韩立群.人工神经网络[M].北京:北京邮电出版社,2006.
  • 3Jenkins B K,Tanguay A R. Handbook of Neural Computing and Neural Networks[M]. Boston: MIT Press,1995.
  • 4Bnlsabi A. Some analytical solutions to the general approximation problem for feed forward neural networks[J]. Neural Networks 1993(6): 991-996.
  • 5Setiono R,Leow W K.FERNN: An algorithm for fast extraction of rules from neural networks[J]. Applied Intelligence,2000, 12(1-2): 15-25.
  • 6XIA Min,FANG Jian-an,TANG Yang,et al. Dynamic depression control of chaotic neural networks for associative memory[J]. Neurocomputing, 2010(73),776-783.
  • 7OZ C,LEU M C. American sign language word recognition with a sensory glove using artificial neural networks[J].Engineering Applications of Artificial Intelligence,2011(4):1204-1213.
  • 8Singhal D, Swarup K S. Electricity price forecasting using artificial neural networks[J]. Electrical Power and Energy Systems,2011(3):550-555.
  • 9WU Wei,WANG Jian,CHENG Ming-song,et al. Convergence analysis of online gradient method for BP neural networks[J]. Neural Networks , 2011(24):91-98.
  • 10罗忠,谢永斌,朱重光.CMAC学习过程收敛性的研究[J].自动化学报,1997,23(4):455-461. 被引量:26

共引文献291

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部