期刊文献+

基于传感器融合的海上目标检测综述 被引量:1

A Survey of Marine Target Detection Based on Sensor Fusion
在线阅读 下载PDF
导出
摘要 目标检测技术是一种基于目标几何和统计特征的图像分割。我国海洋领域广阔、海洋资源丰富,开展海上目标检测研究意义深远。基于传感器融合的海上目标检测方法是监视海运交通、维护海洋权益的一种高效手段。本文首先给出传感器融合检测的研究意义和该领域存在的挑战,然后梳理归纳了三种传感器融合方法,包括:多雷达融合检测方法、多相机融合检测方法和相机雷达融合检测方法;接着给出这几种融合方法在不同场景下的检测效果,并介绍了这几种融合方法存在的局限性;同时展望了传感器融合在海上目标检测的未来发展方向,如检测信息传输在海上抗干扰能力的提升、多目标检测性能的优化,以及将深度学习应用在传感器融合检测等。 Object detection technology is an image segmentation based on objects’geometric and statistical features.My country has a vast marine field and rich marine resources,and it is of far-reaching significance to carry out research on marine target detection.The marine target detection method based on sensor fusion efficiently monitors marine traffic and maintains marine rights and interests.This paper first presents the research significance of sensor fusion detection and the challenges in this field and then summarizes three sensor fusion methods,including the multi-radar fusion detection method,multi-camera fusion detection method,and camera-radar fusion detection method;The detection effects of these fusion methods in different scenarios are introduced,and the limitations of these fusion methods are introduced.At the same time,the future development direction of sensor fusion in marine target detection prospected,Such as the improvement of the anti-interference ability of detection information transmission at sea,the optimization of multi-target detection performance,and the application of deep learning in sensor fusion detection.
作者 李永国 徐彩银 汤璇 李祥燕 LI Yongguo;XU Caiyin;TANG Xuan;LI Xiangyan(School of Engineering,Shanghai Ocean University,Shanghai 201306,China;Shanghai Marine Renewable Energy Engineering Technology Research Center,Shanghai 201306,China)
出处 《世界科技研究与发展》 CSCD 2023年第2期189-199,共11页 World Sci-Tech R&D
基金 国家自然科学基金面上项目“基于磁流体发电原理的海洋可再生能源利用中的基础问题研究”(51876114) 上海市科学技术委员会资助项目“上海海洋可再生能源工程技术研究中心”(19DZ2254800)。
关键词 海上目标检测 融合方法 多相机融合 多雷达融合 相机雷达融合 Maritime Target Detection Fusion Method Multi-Camera Fusion Multi-Radar fusion Camera-Radar Fusion
作者简介 徐彩银:在读硕士研究生,主要研究方向:多传感器融合、图像识别、机器视觉。E-mail:2239470634@qq.com,Tel:17355061884。
  • 相关文献

参考文献9

二级参考文献85

  • 1刘兴洪,汪林林.一种图像边缘保持的改进方向平滑算法[J].计算机科学,2006,33(10):210-212. 被引量:8
  • 2徐玉如,苏玉民,庞永杰.海洋空间智能无人运载器技术发展展望[J].中国舰船研究,2006,1(3):1-4. 被引量:88
  • 3宁焕生,刘文明,李敬,赵欣如.航空鸟击雷达鸟情探测研究[J].电子学报,2006,34(12):2232-2237. 被引量:28
  • 4WANG Xin-yu, CHEN Jing-dong, XU Huo-sheng, et al. Adaptive method for infrared small target detection based on gray-scale morphology and backward cumulative histogram analysis [C]// International Conference on Information and Automation, Zhuhai, Macao, June22-24, 2009: 173-177.
  • 5Jihui Y, Yongjin K, Boohwan L, et al. Improved small target detection for IR point target [C]//34th International Conference on Infrared, Millimeter, and Terahertz Waves, Seoul, Korea, Sept 21-25, 2009: 1-2.
  • 6WEI Min, CHEN Hai-ning, WU Qin-zhang, et al. Slow movement small target detecting method base on frame correlation [C]// 2010 International Conference on Mechanic Automation and Control Engineering, Wuhan, June 26-28, 2010: 4742-4744.
  • 7Cristani M, Bicegi M, Murino V. Integrated Region- and Pixel-based Approach to Background Modeling [C]//IEEE Workshop on Motion and Video Computing, Orlando, Dec 5-6, 2002: 22-27.
  • 8Stauffer C, Grimson W. Learning Patterns of Activity using Real-time Tracking [J]. IEEE Transactions on Pattern Analysis and Machine intelligence(S0162-8828), 2000, 22(8): 747-757.
  • 9Friedman N, Russell S. Image Segmentation in Video Sequences: A Probabilistic Approach [C]//Proceedings of Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, August 1-3, 1997: 175-181.
  • 10Mittal A, Paragios N. Motion-Based Bacground Subtraction using Adaptive Kernel Density Estimation [C]//Proeeedings of Computer Vision and Pattern Recognition, Washington D C, USA, June 27-July 2, 2004: 302-309.

共引文献212

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部