期刊文献+

基于CMVO的涡扇发动机加速过程优化控制

Acceleration Process Optimization Control of Turbofan Engine Based on Chaotic Multi verse Optimizer
在线阅读 下载PDF
导出
摘要 针对涡扇发动机加速过程控制寻优难的问题,提出了一种混沌多元宇宙优化算法。在多元宇宙优化算法的基础上加入混沌初始化和混沌搜索,增强了全局搜索能力。采用算法进行涡扇发动机加速过程优化控制仿真,并与可行序列二次规划算法、粒子群算法和多元宇宙优化算法进行对比验证。结果表明:算法能够实现加速过程的优化控制,发动机紧贴喘振边界加速,且满足各个约束条件。对燃油流量、喷口面积、风扇和压气机导叶角度四控制量同时进行优化时,其加速时间为3.8 s,优于其他三种算法。验证了算法具有较强的全局搜索能力,在涡扇发动机加速过程优化控制问题中具有一定的优势。 As the optimization control of turbofan engine acceleration process is difficult,a chaotic multi verse optimizer(CMVO)algorithm is proposed.The chaotic initialization and chaotic search are added to the multi verse optimizer(MVO)algorithm to enhance the global search ability.Compared with the feasible sequence quadratic programming(FSQP)algorithm,particle swarm optimization(PSO)algorithm and MVO algorithm,the acceleration process optimization control simulations were carried out based on CMVO algorithm.The results show that CMVO algorithm can realize the optimization control of the acceleration process.The engine accelerates close to the surge boundary and meets various constraints.The acceleration time is 3.8 seconds when optimizing the four control variables of fuel flow,nozzle throat area,fan and compressor guide vane angle,which is better than the other three algorithms.Comparative results show that the algorithm has strong global search ability and has obvious advantages in the acceleration process optimization control of turbofan engine.
作者 赵姝帆 龚诚 蒋筑宇 ZHAO Shu-fan;GONG Cheng;JIANG Zhu-yu(Aerospace Technology Research Institute,China Aerodynamic Research and Development Center,Mianyang 621000,China)
出处 《航空计算技术》 2023年第2期25-29,共5页 Aeronautical Computing Technique
关键词 涡扇发动机 加速优化 多元宇宙优化 混沌 全局最优解 turbofan engine acceleration optimization multi verse optimizer chaos global optima solution
作者简介 赵姝帆(1991-),男,四川绵阳人,助理研究员,博士。
  • 相关文献

参考文献3

二级参考文献13

  • 1戚学锋,樊丁,陈耀楚.用多目标FSQP算法实现涡扇发动机多变量非线性控制[J].西北工业大学学报,2004,22(5):644-648. 被引量:3
  • 2戚学峰 樊丁.改进FSQP算法的涡扇发动机多变量非线性控制.航空动力学报,2005,.
  • 3M M Reyes Sierra,C A Coello Coello.Multi-Objective ParticleSwarm Optimizers:A Survey of the State-of-the-Art[J].In-ternational Journal of Computational Intelligence Research.2006,12(3):287-308.
  • 4S Mostaghim and J Teich.Strategies for Finding Good Local Guidesin Multi-Objective Particle Swarm Optimization[C].In IEEESwarm Intelligence Symposium,Indianapolis,USA,2003:26-33.
  • 5M A Abido.Multiobjective Optimal VAR Dispatch Using StrengthPareto Evolutionary Algorithm[C].2006 IEEE Congress on Evolu-tionary Computation,Canada,2006:730-736.
  • 6A Oyama,K Fujii,K Shimoyama and M S Liou.Pareto-Optimal-ity-Based Constraint-Handling Technique and Its Application toCompressor Design[C].7th AIAA Computational Fluid DynamicsConference,Toronto,2005:2005-4983.
  • 7S Naka,T Genji,T Yura,Y Fukuyama.A hybrid particleswarm optimization for distribution state estimation[J].IEEETransaction Power Systems,2003,18(1):60-68.
  • 8赵琳,樊丁.基于SQP的航空发动机加速规律优化方法[J].推进技术,2010,31(2):216-218. 被引量:3
  • 9李太勇,吴江,朱波,方冰.一种基于距离度量的自适应粒子群优化算法[J].计算机科学,2010,37(10):214-216. 被引量:9
  • 10何黎明,樊丁.利用SQP控制涡扇发动机加速过程的多目标最优化研究[J].航空动力学报,2001,16(2):179-181. 被引量:14

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部