期刊文献+

基于视觉传达的激光雷达图像目标检测方法

Lidar image target detection method based on visual communication
在线阅读 下载PDF
导出
摘要 由于激光雷达图像目标检测的过程中,没有将背景和目标区分开,导致图像目标检测的精度较低,检测时间较长,检测效果较差,为此提出基于视觉传达的激光雷达图像目标检测方法。通过置信滤波方法对激光雷达图像实行预处理,划分激光雷达图像的背景区域和目标区域,将目标区域输入到基于视觉传达技术的视觉特征提取器中,提取图像目标区域特征,采用多核学习理论优化支持向量机,将提取的图像特征输入优化后的支持向量机中,实现激光雷达雷达图像的目标检测。实验结果表明,所提方法的检测效果好、检测精度高、检测时间短。 In the process of lidar image target detection, the background and target are not separated, resulting in low accuracy, long detection time and poor detection effect. Therefore, a lidar image target detection method based on visual communication is proposed. Through the confidence filtering method, the lidar image is preprocessed, the background area and target area of the lidar image are divided, the target area is input into the visual feature extractor based on visual communication technology, the image target area features are extracted, the multi-core learning theory is used to optimize the support vector machine, and the extracted image features are input into the optimized support vector machine to realize the target detection of lidar image. The experimental results show that the proposed method has good detection effect, high detection accuracy and short detection time.
作者 张娜 王静 王春霞 ZHANG Na;WANG Jing;WANG Chunxia(Jiaozuo University,Jiaozuo Henan 454000,China)
机构地区 焦作大学
出处 《激光杂志》 CAS 北大核心 2023年第2期113-117,共5页 Laser Journal
基金 教育部规划基金(No.21A11522001) 河南省教育科学规划课题(No.2021YB0697) 河南省科技计划项目(No.212400410356)。
关键词 视觉传达 激光雷达图像 图像目标 目标检测 visual communication lidar image image target target detection
作者简介 张娜(1982-),女,硕士,讲师,研究方向:视觉传达、美术学。
  • 相关文献

参考文献18

二级参考文献124

  • 1王向玉,谢东辉,汪艳,陈一铭,漆建波,阎广建,张吴明.基于地面激光雷达点云数据的单木三维重建[J].遥感技术与应用,2015,30(3):455-460. 被引量:22
  • 2陈晓红,张倩芝,张卫红,谢方艳.多重衰减全反射-红外光谱法在复合材料表面分析中的应用[J].光散射学报,2007,19(2):158-162. 被引量:13
  • 3Itti L, Koch C, Niebur E. A Model of Saliency-Based Visual Attention for Rapid Scene Analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 1998, 20(11): 1254-1259.
  • 4Itti L, Koch C. Feature combination strategies for saliency based visual attention systems [J]. Journal of Electronic imaging(S0277-786X), 2001, 10(1): 161-169.
  • 5LI Qian, WANG Shuo-zhong, ZHANG Xin-peng. Hierarchical identification of visually salient image regions [C]// International Conference on Audio, Language and Image Processing, Shanghai, China, July 7-9, 2008: 1708-1712.
  • 6Achanta R, Susstrunk S. Saliency Detection using Maximum Symmetric Surround [C]//Proeeedings of IEEE International Conference on Image Processing, Hong Kong, China, Sept 26-29, 2010: 2653-2656.
  • 7ZHANG Qiao-rong, LIU Hai-bo, SHEN Jing, et al. An improved computational approach for salient region detection[J]. Journal of Computers(S1796-203X), 2010, 5(7): 1011-1018.
  • 8HOU Xiao-di, ZHANG Li-qing. Saliency Detection: A Spectral Residual Approach[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2007: 1-8.
  • 9GUO Chen-lei, ZHANG Li-ming. A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression [J]. IEEE Transactions on Image Processlng(S1057-7149), 2010, 19(1): 185-198.
  • 10Borji Ali, Ahmadabadi Majid Nili, Araabi Babak Nadjar, et al. Online learning of task-driven object-based visual attention control [J]. Image and Vision Computing(S0262-8856), 2010, 28(7): 1130-1145.

共引文献232

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部