期刊文献+

城市居民绿色出行行为关键影响因素分析 被引量:5

Analysis of key influencing factors of urban residents’green travel behavior
在线阅读 下载PDF
导出
摘要 为响应国家绿色出行的号召,依据城市居民绿色出行意愿来探究城市居民绿色出行行为的关键影响因素。通过问卷调查获取影响城市居民绿色出行行为的潜在因素,采用过滤式filter和包装式wrapper两种特征选择算法对关键因素进行初步提取:结合filter算法中的信息增益率与基尼指数增益作为评估特征变量的标准对各因素进行评分排序,在wrapper算法中构建多项式朴素贝叶斯、随机森林以及支持向量机3种分类器模型,选择分类性能较好的分类器筛选特征变量。利用多元Logistic回归模型对筛选出来的因素进行2次提取,参考显著性水平以及估算系数分析各因素对绿色出行行为的具体影响。结果表明:群体出行的出行方式、出行态度、疫情影响、出行费用、环保意识、主观规范、学历以及私家车拥有情况8个因素对城市居民绿色出行行为具有较强的影响,并提出针对性的建议,为交通管理者倡导城市居民绿色出行行为提供参考。 In response to the national call for green travel,this paper explores the key influencing factors of green travel behavior according to the green travel willingness of urban residents.The potential factors affecting the green travel behavior of urban residents were obtained through questionnaire survey.The key factors are preliminarily extracted using filter and wrapper feature selection algorithms.In filter feature selection algorithms,a combination of the information gain rate and Gini index gain are used as the criteria to evaluate the characteristic variables.Three classifiers,MNB,RF and SVM,are constructed,and the classifiers with better classification performance are used to screen the characteristic variables in wrapper feature selection algorithms.Multiple Logistic regression model is used for secondary extraction of the screened factors,the specific impact of each factor on green travel behavior is analyzed by reference to the significance levels and the estimated coefficients.The results showed that eight factors,such as the companion travel methods,travel attitude,impact of the epidemic,travel cost,environmental awareness,subjective norms,educational background and private car ownership,had a strong impact on green travel behavior of urban residents,and put forward the specific suggestions to provide a reference for traffic managers to advocate urban residents to select green travel.
作者 刘云 杨信丰 党浩烊 LIU Yun;YANG Xinfeng;DANG Haoyang(College of Transportation,Lanzhou Jiaotong University,Lanzhou 730070,China;College of Automation Engineering,University of Electronic Science and Technology of China,Chengdu 610054,China)
出处 《交通科技与经济》 2023年第2期40-47,共8页 Technology & Economy in Areas of Communications
基金 甘肃省自然科学基金项目(21JR1RA236) 中央引导地方科技发展资金项目(22ZY1QA005)。
关键词 城市居民 绿色出行行为 特征选择 多元LOGISTIC回归分析 分类器 urban residents green travel behavior feature selection multiple Logistic regression analysis classifier
作者简介 第一作者:刘云(1998-),女,硕士研究生,研究方向:交通运输系统优化;通信作者:杨信丰(1978-),男,教授,博士,研究方向:交通运输系统优化.
  • 相关文献

参考文献11

二级参考文献122

  • 1温宁,张红丽.干旱区农户农田防护林经营意愿与行为悖离影响因素分析——基于新疆农户的调查研究[J].干旱区资源与环境,2020,34(4):59-64. 被引量:19
  • 2王万竹,王京安,金晔.可持续消费态度和行为差异成因探讨[J].生态经济(学术版),2012(1):12-15. 被引量:17
  • 3宗芳,隽志才.基于活动的出行方式选择模型与交通需求管理策略[J].吉林大学学报(工学版),2007,37(1):48-53. 被引量:43
  • 4Li G-Z, Yang J Y. Feature selection for ensemble learning and its application[M]. Machine Learning in Bioinformatics, 2008: 135-155.
  • 5Sheinvald J, Byron Dom, Wayne Niblack. A modelling approach to feature selection[J]. Proc of 10th Int Conf on Pattern Recognition, 1990, 6(1): 535-539.
  • 6Cardie C. Using decision trees to improve case-based learning[C]. Proc of 10th Int Conf on Machine Learning. Amherst, 1993: 25-32.
  • 7Modrzejewski M. Feature selection using rough sets theory[C]. Proc of the European Conf on Machine ,Learning. 1993: 213-226.
  • 8Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data[J]. J of Bioinformatics and Computational Biology, 2005, 3(2): 185-205.
  • 9Francois Fleuret. Fast binary feature selection with conditional mutual information[J]. J of Machine Learning Research, 2004, 5(10): 1531-1555.
  • 10Kwak N, Choi C-H. Input feature selection by mutual information based on Parzen window[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(12): 1667-1671.

共引文献335

同被引文献72

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部