期刊文献+

基于分块检测的社区网络敏感信息聚类算法 被引量:1

Clustering algorithm of sensitive information in community network based on block detection
在线阅读 下载PDF
导出
摘要 为了提高无线虚拟社区网络敏感特征信息聚类能力,需要进行数据优化聚类处理,提出基于分块文本相似度检测的无线虚拟社区网络敏感特征信息网格强化聚类算法。采用异构有向图分析方法进行无线虚拟社区网络敏感特征信息存储结构设计,结合特征空间重组技术进行无线虚拟社区网络敏感特征信息结构重组,提取无线虚拟社区网络敏感特征信息的关联信息特征量,采用分块文本相似度检测的方法实现对社区网络敏感特征信息谱密度特征提取和融合聚类处理。仿真结果表明,采用该方法进行社区网络敏感特征信息谱密度融合的聚类性较好,对社区网络敏感信息的分块检测能力较强。 In order to improve the clustering ability of sensitive feature information of wireless virtual community network, it is necessary to carry out data optimization clustering processing. This paper proposes a grid strengthening clustering algorithm for sensitive feature information of wireless virtual community network based on block text similarity detection. The heterogeneous directed graph analysis method is used to design the storage structure of sensitive feature information of wireless virtual community network, after that the feature space reorganization technology is used to reorganize the sensitive feature information structure of wireless virtual community network, and the related information feature quantity of sensitive feature information of wireless virtual community network is extracted. The block text similarity detection method is used to realize the spectral density feature extraction and fusion clustering processing of sensitive feature information of community network. The simulation results show that the clustering of sensitive feature information spectral density fusion of community network by this method is good, and the ability of block detection of sensitive information of community network is strong.
作者 王学军 WANG Xuejun(Guangzhou Huali College,Guangzhou 511325,China)
机构地区 广州华立学院
出处 《智能计算机与应用》 2022年第12期214-217,共4页 Intelligent Computer and Applications
关键词 社区网络 敏感特征 谱密度 融合聚类 community network sensitive features spectral density fusion clustering
作者简介 通讯作者:王学军(1973-),男,硕士,讲师,主要研究方向:社区发现、聚类算法研究。Email:wxjgdut@163.com。
  • 相关文献

参考文献12

二级参考文献89

  • 1黄晓莉,曾黄麟,王秀碧.基于模糊C均值聚类的粗集理论连续属性的离散化新算法[J].重庆邮电学院学报(自然科学版),2006,18(5):650-652. 被引量:6
  • 2HanJ,KamberM.数据挖掘:概念与技术[M].范明,盂小峰,译.2版.北京:机械工业出版社,2007.
  • 3JAIN A,MURTY M,FLYNN P J.Data clustering:a review [J].ACM Computing Surveys,1999,31(3):264-323.
  • 4LEOPOLD E,KINDERMANN J.Text categorization with support vector machines:how to represent texts in input space? [J].Machine Learning,2002,46(1/2/3):423-444.
  • 5PARSONS L,HAQUE E,LIU H.Subspace clustering for high dimensional data:a review [J].ACM Knowledge Discovery and Data Mining Explorations Newsletter,2004,6(1):90-105.
  • 6VERLEYSEN M.Learning high-dimensional data [C]// Proceedings of the Limitations and Future Trends in Neural Computation.Siena:IOS Press,2003:141-162.
  • 7YANG Q,WU X.10 challenging problems in data mining research [J].International Journal of Information Technology and Decision Making,2006,5(4):597-604.
  • 8KRIEGEL H P,KRGER P,ZIMEK A.Clustering high-dimen-sional data:a survey on subspace clustering,pattern-based clustering,and correlation clustering [J].ACM Transactions on Knowledge Discovery from Data,2009,3(1):1-58.
  • 9JING L,NG M K,HUANG J Z.An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data [J].IEEE Transactions on Knowledge and Data Engineering,2007,19(8):1026-1041.
  • 10HUANG J Z,NG M K,RONG H,et al.Automated variable weighting in k-means type clustering [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(5):657-668.

共引文献334

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部