期刊文献+

Remaining Useful Life Prediction With Partial Sensor Malfunctions Using Deep Adversarial Networks 被引量:6

在线阅读 下载PDF
导出
摘要 In recent years,intelligent data-driven prognostic methods have been successfully developed,and good machinery health assessment performance has been achieved through explorations of data from multiple sensors.However,existing datafusion prognostic approaches generally rely on the data availability of all sensors,and are vulnerable to potential sensor malfunctions,which are likely to occur in real industries especially for machines in harsh operating environments.In this paper,a deep learning-based remaining useful life(RUL)prediction method is proposed to address the sensor malfunction problem.A global feature extraction scheme is adopted to fully exploit information of different sensors.Adversarial learning is further introduced to extract generalized sensor-invariant features.Through explorations of both global and shared features,promising and robust RUL prediction performance can be achieved by the proposed method in the testing scenarios with sensor malfunctions.The experimental results suggest the proposed approach is well suited for real industrial applications.
出处 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第1期121-134,共14页 自动化学报(英文版)
基金 supported by the National Science Fund for Distinguished Young Scholars of China(52025056) Fundamental Research Funds for the Central Universities(xzy012022062)。
作者简介 Xiang Li,Member,IEEE,e-mail:lixiang@xjtu.edu.cn;Yixiao Xu,e-mail:xuyixiao@stu.xjtu.edu.cn;Corresponding author:Naipeng Li,Member,IEEE,e-mail:naipengli@mail.xjtu.edu.cn;Bin Yang,Student Member,IEEE,e-mail:yangbin_xian@stu.xjtu.edu.cn;Yaguo Lei,Senior Member,IEEE,e-mail:yaguolei@mail.xjtu.edu.cn。
  • 相关文献

同被引文献40

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部