期刊文献+

基于SNRgram方法的滚动轴承故障特征提取

Fault Feature Extraction of Rolling Bearings Based on SNRgram Method
在线阅读 下载PDF
导出
摘要 针对平方包络信号的负熵对随机脉冲敏感以及平方包络谱的负熵易受离散谐波干扰,从而导致信息图法对随机脉冲和离散谐波分析时鲁棒性差的问题,引入信噪比测度作为轴承故障信息的评估指标,识别包含丰富故障信息的共振频带,并进一步提出基于SNRgram的包络分析方法提取滚动轴承故障特征。仿真和试验结果表明,相对于信息图和其他典型频带识别方法,SNRgram方法处理随机脉冲和离散谐波时具有更强的鲁棒性以及更高的频带识别准确性,能够有效识别轴承故障相关共振频带并提取轴承故障脉冲特征。 The negentropy of squared envelope signal is sensitive to random pulses,and the negentropy of squared envelope spectrum is easily interfered by discrete harmonics,leading to poor robustness of Infogram for analysis of random pulses and discrete harmonics.A signal-to-noise ratio measure is introduced as an evaluation index of bearing fault information and used to identify the resonance frequency band containing abundant fault information.Furthermore,a envelope analysis method based on SNRgram is proposed for extracting the fault features of rolling bearings.The simulation and experimental results show that the SNRgram method is more robust to random pulses and discrete harmonics and has higher frequency band identification accuracy compared with Infogram and other typical frequency band identification methods,and can effectively identify the bearing fault-related resonance frequency band and extract the bearing fault pulse features.
作者 刘妮娜 LIU Nina(Rail Transit Engineering Practice Center,Nanjing Vocational Institute of Railway Technology,Nanjing 210031,China)
出处 《轴承》 北大核心 2023年第1期76-82,共7页 Bearing
关键词 滚动轴承 故障诊断 特征提取 随机脉冲 频带 信噪比 滤波 rolling bearing fault diagnosis feature extraction random pulse frequency band signal-to-noise ratio filtering
  • 相关文献

参考文献4

二级参考文献47

  • 1刘源泂,孔建益,王兴东,李公法.对低速重载滚动轴承寿命计算方法的探讨[J].湖北工业大学学报,2005,20(3):80-82. 被引量:4
  • 2奚立峰,黄润青,李兴林,刘中鸿,李杰.基于神经网络的球轴承剩余寿命预测[J].机械工程学报,2007,43(10):137-143. 被引量:58
  • 3王胜春,韩捷,李志农,李剑峰.谐波小波包自适应分解在故障诊断中的应用[J].农业机械学报,2007,38(10):174-177. 被引量:9
  • 4Dwyer R F. Detection of non-gaussian signals by frequency domain kurtosis estimation [ C ]//Acoustics, Speech, and Signal Processing . Boston: IEEE International Conference on ICASSP, 1983:607 - 610.
  • 5Antoni J. The spectral kurtosis: A useful tool for characterizing non-stationary signals [ J ]. Mechanical Systems and Signal Processing,2006,20(2) :282 -307.
  • 6Antoni J, Randall R B. The spectral kurtosis: Application to the vibratory surveillance and diagnostics of rotating machines [ J ]. Mechanical Systems and Signal Processing, 2006, 20(2) :308 -331.
  • 7Antoni J. Fast computation of the kurtogram for the detection of transient faults [ J ]. Mechanical Systems and Signal Processing,2007,21 ( 1 ) : 108 - 124.
  • 8Wang D, Tse P W, Tsui K L. An enhanced kurtogram method for fault diagnosis of rolling element bearings [ J ]. Mechanical Systems and Signal Processing,2013,35 ( 1 ) : 176 - 199.
  • 9王冬云.转子-轴承故障诊断方法研究[D].秦皇岛:燕山大学,2012.
  • 10Marple S L. Computing the discrete-time analytic" signal via FFT [ J]. IEEE Transactions on Signal Processing, 1999, 47 (9) : 2600 - 2603.

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部