期刊文献+

基于K-Means聚类算法的碳排放审计预警研究 被引量:4

Research on Early Risk Warning in Carbon Emission Audit with K-Means Clustering Algorithm
在线阅读 下载PDF
导出
摘要 随着我国碳达峰碳中和目标的提出,碳排放审计深受关注。2022年“3·15”国际消费者权益日,国内首批碳排放数据造假案例浮出水面。我国高度重视碳排放数据造假问题,把打击数据造假、加强数据监管作为一项重要政治任务。为积极响应国家绿色低碳相关政策,改善碳排放工作中的相关问题,本文进行了如下研究:基于机器学习中无监督学习方法——K-Means聚类算法为企业构建碳排放审计预警模型,通过识别偏离的异常点,判定企业是否存在碳排放风险;并以我国重点钢铁企业为例进行了仿真;最后针对企业数据管理以及审计人员专业能力提出了两方面的保障措施,确保预警模型能够行之有效。 As China has put forward the goals of reaching peak carbon emissions and achieving carbon neutrality,the carbon emission audit has attracted more and more attention. China has always attached great importance to the data frauds of carbon emissions, and made it an important political task to crack down on data frauds and strengthen relevant supervision.In order to actively implement national policies of green and low-carbon development and solve relevant problems in the carbon emissions,this article researches how to use the K-Means clustering algorithm, an unsupervised learning method in machine learning, to construct an early risk warning model for carbon emission audit for the enterprises, which can identify the outliers with data skew sand judge whether the enterprises face risks in carbon emissions;it then conducts simulation test staking the key iron and steel enterprises as examples;finally, it puts forward the safeguard measures targeting both the data management inenterprises and the competence of auditors, so as to ensure the effectiveness of the early risk warning model.
出处 《中国注册会计师》 北大核心 2022年第12期14-20,I0002,共8页 The Chinese Certified Public Accountant
  • 相关文献

参考文献9

二级参考文献52

  • 1汪荣鑫.数理统计[M].西安交通大学出版社,2004.198,209.
  • 2韩家炜.数据挖掘概念与技术[M].北京:机械工业出版社,2004.
  • 3吕新民,王学荣.数据挖掘在审计数据分析中的应用研究[J].审计与经济研究,2007,22(6):35-38. 被引量:24
  • 4Aaron Philippsen,Peter Wild,Andrew Rowe.Energy input, carbon intensity and cost for ethanol produced from farmed seaweed[J]. Renewable and Sustainable Energy Reviews . 2014
  • 5Anu Ramaswami,Abel Chavez.What metrics best reflect the energy and carbon intensity of cities? Insights from theory and modeling of 20 US cities[J]. Environmental Research Letters . 2013 (3)
  • 6DENNIS NOVY.GRAVITY REDUX: MEASURING INTERNATIONAL TRADE COSTS WITH PANEL DATA[J]. Economic Inquiry . 2012 (1)
  • 7M. Budzianowski Wojciech.Modelling of CO2 content in the atmosphere until 2300: influence of energy intensity of gross domestic product and carbon intensity of energy. International Journal of Global Warming . 2013
  • 8Jorgenson A K.Economic development and the carbon intensity of human well-being. Nature Climate Change . 2014
  • 9刘家义.以科学发展观为指导 推动审计工作全面发展[J].审计研究,2008(3):3-9. 被引量:300
  • 10王伟钧,马晓凯.基于证券行业半结构化数据的抽取技术[J].成都大学学报(自然科学版),2008,27(2):127-130. 被引量:4

共引文献888

同被引文献53

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部