期刊文献+

Direction-of-Arrival Method Based on Randomize-Then-Optimize Approach

在线阅读 下载PDF
导出
摘要 The direction-of-arrival(DOA)estimation problem can be solved by the methods based on sparse Bayesian learning(SBL).To assure the accuracy,SBL needs massive amounts of snapshots which may lead to a huge computational workload.In order to reduce the snapshot number and computational complexity,a randomize-then-optimize(RTO)algorithm based DOA estimation method is proposed.The“learning”process for updating hyperparameters in SBL can be avoided by using the optimization and Metropolis-Hastings process in the RTO algorithm.To apply the RTO algorithm for a Laplace prior,a prior transformation technique is induced.To demonstrate the effectiveness of the proposed method,several simulations are proceeded,which verifies that the proposed method has better accuracy with 1 snapshot and shorter processing time than conventional compressive sensing(CS)based DOA methods.
出处 《Journal of Electronic Science and Technology》 CAS CSCD 2022年第4期416-424,共9页 电子科技学刊(英文版)
基金 This work was supported by the National Natural Science Foundation of China under Grants No.61871083 and No.61721001.
作者简介 Cai-Yi Tang,e-mail:caiyi_tang1995@163.com;Sheng Peng,e-mail:pengsheng.com;Corresponding author:Zhi-Qin Zhao,e-mail:zqzhao@uestc.edu.cn;Bo Jiang,e-mail:yavazhili@gmail.com。
  • 相关文献

参考文献1

二级参考文献8

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部