期刊文献+

基于ISSA-GRNN的无线传感器网络定位优化算法 被引量:5

Optimization algorithm for wireless sensor network localization based on ISSA-GRNN
在线阅读 下载PDF
导出
摘要 为了减少无线传感器网络(WSN)节点在传统方法上的定位误差,增强定位的准确度,提出了一种融合改进的麻雀搜索算法和广义回归神经网络(ISSA-GRNN)的节点定位优化算法。首先,对普通DV-Hop算法和Centroid定位算法的节点信息分别优化,利用加权优化思想和节点信号强度修正DV-Hop算法的跳距与Centroid算法的质心。然后将修正后的跳距、质心特征和节点其他特征相融合,作为GRNN的输入向量进行训练。为了解决网络调节参数随机设置的问题,通过ISSA改进网络参数,并得到未知节点的最优预测位置。仿真结果表明,与其他优化算法相比,该算法平均定位误差较小,定位精度得以提升。 A node localization optimization algorithm combining improved sparrow search algorithm and generalized regression neural network(ISSA-GRNN)is proposed so as to reduce the localization errors of wireless sensor network(WSN)nodes in traditional methods and enhance the localization accuracy.Firstly,the node information of ordinary DV-Hop algorithm and Centroid positioning algorithm is optimized respectively,and the hop distance of DV-Hop algorithm and centroid of Centroid algorithm are modified by using weighted optimization method and node signal strength.Then,the modified hop distance feature,centroid feature and other features of the node are fused as the input vector of GRNN for training.As for the random setting of network adjustment parameters,the network parameters are improved by ISSA and the optimal prediction positions of unknown nodes are obtained.The simulation results show that compared with other optimization algorithms,the average localization error of this algorithm is smaller,which makes the localization accuracy greatly enhanced.
作者 王家威 薛亚辉 魏子尧 WANG Jia-wei;XUE Ya-hui;WEI Zi-yao(School of Information Engineering,Jiaozuo University,Jiaozuo 454000,China;School of Control Science and Engineering,China University of Petroleum(East China),Qingdao 266580,China)
出处 《齐鲁工业大学学报》 CAS 2022年第6期21-27,共7页 Journal of Qilu University of Technology
关键词 无线传感器网络 节点定位 加权优化 广义回归神经网络 麻雀搜索算法 wireless sensor network(WSN) node localization weighted optimization generalized regression neural network(GRNN) sparrow search algorithm(SSA)
作者简介 王家威,硕士、助教,研究方向:数据分析与处理、无线传感器网络,729687583@qq.com。
  • 相关文献

参考文献9

二级参考文献80

  • 1Rudafshani M, Datta S. Localization in Wireless Sensor Networks[C ]//Information Processing in Sensor Networks, 2007. IPSN2007. 6th International Symposium on. IEEE,2007 : 51-60.
  • 2Han G, Xu H, Duong T Q,et al. Localization Algorithms of Wire-less Sensor Networks : A Survey [J]. Telecommunication Systems,2013,52(4):2419-2436.
  • 3Fu C, Qian Z, Ji G,et al. An Improved DV-Hop Localization Algo-rithm in Wireless Sensor Network [ C ]//Information Technologyand Applications (IT A) ,2013 International Conference on. IEEE,2013:13-16.
  • 4Hadir A,Zine-Dine K, Bakhouya M, et ai. An Improved DV-HopLocalization Algorithm for Wireless Sensor Networks [C]//NextGeneration Networks and Services (NGNS),2014 Fifth Interna-tional Conference on. IEEE, 2014 : 330-334.
  • 5Zine-Dine K,Hadir A,Madani A,et al. Comparative Study of Lo-calization Algorithms Performance in Wireless Sensors Network[J]. International Journal of Research in Engineering & Ad-vanced Technology, 2014 : 1-9.
  • 6ISeshat M, Sepidnam G, Sargolzaei M, et al. Artificial Fish SwarmAlgorithm : A Survey of the State-of-the-Art,Hybridization,Combi-natorial and Indicative Applications [J]. Artificial Intelligence Re-view,2014,42(4) :965-997.
  • 7戴桂兰,赵冲冲,邱岩.一种基于球面坐标的无线传感器网络三维定位机制[J].电子学报,2008,36(7):1297-1303. 被引量:31
  • 8肖硕,魏学业,王钰.基于信标优化选择的无线传感网络定位方法研究[J].电子测量与仪器学报,2009,23(3):65-69. 被引量:21
  • 9杜存功,丁恩杰,苗曙光,王满意,朱微维.无线传感器网络改进型节点定位算法的研究[J].传感器与微系统,2010,29(1):52-54. 被引量:11
  • 10韩霜,罗海勇,陈颖,丁玉珍.基于TDOA的超声波室内定位系统的设计与实现[J].传感技术学报,2010,23(3):347-353. 被引量:44

共引文献110

同被引文献41

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部